
EE263 Final Exam, August 2023

• This is a 12-hour take-home exam. Please turn it in on Gradescope.

Be aware that you must turn it in within 12 hours of downloading it. After that, Gradescope
will not let you turn it in.

• You may use any books, notes, or computer programs, including searching online, except for
ChatGPT or similar tools. You may not discuss the exam or course material with others, or
work in a group.

• Do not discuss the exam until 8/23, after everyone has taken it.

• If you have a question, please email the staff. We have done our best to make the exam unam-
biguous. So unless there is a mistake, we are unlikely to say much.

• Please check your email during the exam, in case we need to send a clarification or announcement.

• We expect your solutions to be legible, neat, and clear. Do not hand in your rough notes. Please
try to simplify your solutions as much as you can. We will deduct points from solutions that are
technically correct, but much more complicated than they need to be.

• Start each solution on a new page. Individual parts can be on same page.

• When a problem involves some computation, we expect a clear discussion and justification of
what you did as well as the final numerical result.

• Because this is an exam, you must turn in your code. Include the code in your pdf submission.
We will deduct points for missing code.

• Good luck!
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6.2320. The Sinewave Scalewing. The Sinewave Scalewing is a rare mathematically-inclined sea serpent
which can only fly in patterns of the form

x(t) =

N∑
k=1

a
(1)
k sin

(
k

30
πt

)
+ a

(2)
k cos

(
k

30
πt

)

y(t) =

N∑
k=1

b
(1)
k sin

(
k

30
πt

)
+ b

(2)
k cos

(
k

30
πt

)

where a(1), a(2), b(1), b(2) ∈ RN . For simplicitly, define a =

[
a(1)

a(2)

]
and b =

[
b(1)

b(2)

]
.

The scalewing is a solitary creature and regularly surveys its territory for intruders. To do so, it
plans to start at its home base (0, 0), fly over some islands with (x, y) coordinates (s(x)1 , s

(y)
1 ), . . . , (s

(x)
5 , s

(y)
5 )

and return home (a total of T = 7 waypoints). It plans to depart at time t0, reach island i at time ti
and return at time t6. You can assume 0 ≤ ti < ti+1 for all i = 0, . . . , T − 1.
You may use T = 7, N = 6 and the following waypoints and times:

s(x) =
[
0 17 25 21 26 8 0

]⊤
s(y) =

[
0 −5 −3 5 11 7 0

]⊤
t =

[
0 4 7 19 25 30 34

]⊤
.

a) Define two matrices U ∈ RT×N and V ∈ RT×N such that x(t0)
...

x(tT−1)

 =
[
U V

]
a,

 y(t0)
...

x(tT−1)

 =
[
U V

]
b.

b) Propose a method to plan a trajectory that reaches each island at the correct time while mini-
mizing the loss function

∥a∥22 + ∥b∥22 (1)

which represents the energy the scalewing expends while flying. Clearly describe any matrices
you construct. You are encouraged to use block matrix notation and the definitions of U and V
from part (a).

c) Use your method to compute a trajectory for the scalewing. Report the minimum energy defined
in (??) the scalewing must expend to visit all 5 islands. Plot the islands and

(
x(t̂), y(t̂)

)
using

a smaller timestep; for example, t_hat = t[1]:0.5:t[end]. You should generate a 2D plot
showing the trajectory of the scalewing and the locations of the islands.

d) Due to its unusual flight pattern, the scalewing has difficulty controlling its altitude z(t), which
we can model as

z(t) =
1

10
x(t) +

1

10
y(t).

Suppose the scalewing wants to make a more precise flyover reaching specific (x, y, z) coordinates
at each waypoint. Given the coordinates

s(z) =
[
0 5 3 6 2 1 0

]⊤
,

are the three-dimensional waypoints reachable? Why or why not? Provide a short explanation.
Your answer may use facts about the matrices you constructed earlier.

2



e) Propose a method to minimize the sum of errors

J =

T−1∑
i=0

(
x(ti)− s

(x)
i

)2

+
(
y(ti)− s

(y)
i

)2

+
(
z(ti)− s

(z)
i

)2

.

Provide a short justification for your proposed method (not a formal proof).

f) Use your method to compute a three-dimensional trajectory for the scalewing. Display your
trajectory, along with the locations of the islands, on a three-dimensional plot using the same
smaller timestep as in part (c).

Submit your plot, the value of J , and the energy required for this trajectory.

Hint: In Julia you can import Plots.jl, then use plot3d(x, y, z) and scatter3d(x,y,z).
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Solution. Here is the solution.

a)

U =

 sin
(

1
30πt0

)
. . . sin

(
N
30πt0

)
...

. . .
...

sin
(

1
30πtT−1

)
. . . sin

(
N
30πtT−1

)
 , V =

 cos
(

1
30πt0

)
. . . cos

(
N
30πt0

)
...

. . .
...

cos
(

1
30πtT−1

)
. . . cos

(
N
30πtT−1

)
 .

b) We can construct the least-norm problem to solve

[
U V 0 0
0 0 U V

]
a(1)

a(2)

b(1)

b(2)

 ≈
[
s(x)

s(y)

]
.

Since the matrix is fat, this will return the least-norm solution for a(1), a(2), b(1), b(2).

c) (Julia code at end of solution.)

The energy used is 30.827.

d) We can build a new least-squares problem:

 U V 0 0
0 0 U V
1
10U

1
10V

1
10U

1
10V



a(1)

a(2)

b(1)

b(2)

 ≈
[
s(x)

s(y)

]
.

However, by inspection (or by Julia code check) the new matrix is not full rank so there will
be some unreachable positions. In fact our desired set of waypoints is one of these unreachable
positions.
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e) (Julia code at end of solution.)

Here’s a 2d plot as well.

The energy used is still 30.827.

Here is the Julia code.

18.2310. Particle in magnetic chamber. You have just been employed by Magneto Inc. to work on their
Small Particle Collider (SPC). The SPC generates magnetic fields in order to apply forces to particles
inside of it. These forces can be summed to produce a resultant force in any direction in 3D space.
Your assigned task is to develop a sequence of input forces u(0), . . . , u(t), generated by the SPC walls,
that will move particles in specific ways. We will use the vector x(t) to represent the position and
velocity of a particle in the x, y, and z directions. Namely,

x(t) =

[
p(t)
ṗ(t)

]
∈ R6,
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where p(t) and ṗ(t) represent the particle’s position and velocity, respectively, at time t. Note that
u(t) ∈ R3.

a) We know that the motion dynamics for a particle with mass m can be expressed as u = mp̈. Use
the forward Euler approximation, given by x(t + 1) = x(t) + hẋ(t), to express this system as a
discrete-time linear dynamical system. Explicitly define your matrices A, B, C, and D in terms
of m and h. For our vector of outputs, y(t), we are interested in just the particle’s position for
now, i.e., y(t) = p(t).

b) Write a general expression for

ỹ =


y(0)
y(1)

...
y(t)

 ∈ R3(t+1)

given the initial position and velocity x(0). Your answer may involve x(0), A, B, C, D, and the
inputs u(0), · · · , u(t).

c) We would like to apply forces to the particle such that it returns back to its initial position after
some time T has passed. We also want the particle to pass by a detector at time T/2 (assuming
that T is even).
We would like to find

ũ =


u(0)
u(1)

...
u(T )

 ∈ R3(t+1)

such that y(T ) = p0 and y(T/2) = pT/2, where p0, pT/2 ∈ R3 are the initial position and the
position of the detector respectively. Also, assume that the initial velocity ṗ0 ∈ R3 is known.
Describe a method to find the forces that satisfy these constraints while minimizing ∥ũ∥2.

d) Apply your method to the following numerical values and plot the x, y, and z coordinates of the
particle from time t = 0 to t = T . Make sure to plot the T/2 way-point as well. You should have
one figure with 3 plots, one for each of the axes directions.

p0 =

10
1

 , ṗ0 =

00
0

 , pT/2 =

 2
−1.5
−1

 , T = 200, m = 5, h = 1

e) The lead engineer has a new goal; they would like the particle to not only pass through the
desired positions as explained in the previous parts, but also to do so with precise velocities
denoted by ṗ0 and ṗT/2. Adjust your definitions from part (a) for x, y, A, B, C, or D to suit
this new task if necessary.
Describe a method that achieves the constraints[

p(T/2)
ṗ(T/2)

]
=

[
pT/2

ṗT/2

]
,

[
p(T )
ṗ(T )

]
=

[
p0
ṗ0

]
while minimizing ∥ũ∥2. Similar to part (d), run your method on the given data and plot the x,
y, and z coordinates of the particle from time t = 0 to t = T . Use the same numerical values as
in part (d), along with

ṗT/2 =

10
0

 .
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f) Due to the limitations of the machine, we want to define an objective that represents the rate of
change of the force produced. Define

J2 =

n−1∑
k=1

∥u(k + 1)− u(k − 1)∥2

as the central difference approximation for the force rate of change. Also define J1 = ∥ũ∥2.
Devise a method that minimizes J1+γJ2 while adhering to the position and velocity constraints
defined in part (e).

g) Plot the new x, y, and z coordinates of the particle over time for γ = 10p for p ∈ {−2, 0, 2, 4, 6}.
What do you see as γ is increased?
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Solution. Here is the solution.

a) If p(t+ 1) = p(t) + hṗ(t) and ṗ(t+ 1) = ṗ(t) + hp̈(t), and p̈ = 1
mu, then

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where

A =


1 0 0 h 0 0
0 1 0 0 h 0
0 0 1 0 0 h
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



B =


0 0 0
0 0 0
0 0 0

1/m 0 0
0 1/m 0
0 0 1/m


C =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


D = 0

b) Since this problem is formulated as a discrete-time LDS with inputs and outputs, we already
have a closed form solution for ỹ:

ỹ = Ãũ+ b̃x(0)

where

Ã =


D 0 · · · · · · 0
CB D 0 · · · 0
CAB CB D · · · 0

...
. . .

...
CAt−1B CAt−2B . . . CB D



ũ =

u(0)...
u(t)



b̃ =


C
CA
...

CAt


c) Let ãTi represent the ith row of the block Toeplitz matrix Ã. Then, to satisfy our position

constraints at times t = T/2 and t = T , we only care about the rows of Ã corresponding to
i = T + 1 and i = T+1

2 . Thus, we require

ŷ = Âũ+ b̂x(0)
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where
ŷ =

[
y(T/2)
y(T )

]
Â =

[
ãT(T+1)/2

ãTT+1

]
b̂ =

[
CAT/2

CAT

]
We can then formulate our problem as a least-norm solution with constraints:

minimize ∥ũ∥2
s.t. ŷ − b̂x(0) = Âũ

Using the lecture notes, the optimal solution for ũ is

ũ = ÂT (ÂÂT )−1(ŷ − b̂x(0))

d) Insert plots here

e) Redefine y(t) and C as follows:
y(t) = x(t)

C = I

Then, repeat the same process as in part (c) and

ũ = ÂT (ÂÂT )−1(ŷ − b̂x(0))

f) First, we will define a matrix W such that J2 = ∥Wũ∥2. The W that achieves this is

W =


−I 0 I 0 0 · · · 0
0 −I 0 I 0 · · · 0
...

...
...

0 . . . . . . 0 −I 0 I


Then, our task becomes

minimize J1 + γJ2 s.t. ŷ − b̂x(0) = Âũ

We can then rewrite
J1 + γJ2 = ∥ũ∥2 + γ∥Wũ∥2 = ∥

[
I√
γW

]
ũ∥2

From the lecture notes, we know that the solution to this optimization using Lagrange multipliers
is [

ũ
λ

]
=

[
I + γWTW ÂT

Â 0

]−1 [
0

ŷ − b̂x(0)

]
g) Insert plots here
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19.2330. Multi-Armed bandits. A multi-armed bandit is a concept often used in probability theory and
decision-making. Imagine you’re in a casino facing multiple slot machines (the "arms" of the bandit).
Each machine has a different unknown probability of giving you a reward when you pull its lever. You
have a limited number of pulls to make and you want to maximize your total reward.

The challenge is to decide which machines to pull and in what order, to strike a balance between
exploring (trying out different machines to learn their probabilities) and exploiting (focusing on the
machine that seems to give the best rewards based on your current knowledge).

In real-world scenarios beyond casinos, multi-armed bandits can be used to model situations where
you have limited resources (like time, money, or experiments) and need to make decisions to optimize
outcomes while dealing with uncertainty. This concept finds applications in various fields, such as
online advertising, clinical trials, and recommendation systems.

An extension of this setup, often referred to as a stochastic linear bandit, can be formulated as
follows: Each potential decision, denoted as an arm of the bandit, is represented by a vector x ∈ Rd. It
is assumed that there exists an unknown parameter vector θ ∈ Rd that influences the observed rewards.
To put it more formally, at each time step t, the player is presented with a decision set Dt ⊆ Rd from
which they must select an action xt. Consequently, they observe a reward yt = x⊤

t θ + vt, where vt is
a zero-mean random noise.

a) Suppose the value of θ is known and Dt = {x ∈ Rd : ∥x∥ ≤ 1}. Propose an optimal choice for xt

to maximize the reward and briefly explain why it is a good choice.

b) In practice, θ is unknown and we try to estimate it. Suppose we have T pairs of observations
(xi, yi) for i = 1, · · · , T from the past decisions and rewards. We aim to find an estimate of θ,
namely θ̂, to minimize the cost

J = ∥XT θ̂ − y∥2,

where XT =

x
⊤
1
...
x⊤
T

 ∈ RT×d and y =

y1
...
yT

 ∈ RT .

Which of the following statements most accurately describes the problem of minimizing J when
T < d? Briefly justify your answer.

i. There are infinitely many solutions that achieve J = 0.

ii. There are two possible cases: one unique solution, or infinitely many solutions that achieve
J = 0.

iii. There are two possible cases: no solution, or infinitely many solutions that achieve J = 0.
In the case of no solution with J = 0, the optimal θ̂ with J > 0 can be unique.

iv. There are two possible cases: no solution, or infinitely many solutions that achieve J = 0.
In the case of no solution with J = 0, the optimal θ̂ with J > 0 is not unique.

v. There are three possible cases: No solutions, one unique solution, or infinitely many solutions
that achieve J = 0.

c) It is mostly common to solve the regularized version of the problem, i.e., to minimize the objective

Jµ = ∥XT θ̂ − y∥2 + µ∥θ̂∥2,

where µ > 0 is the regularization parameter.

Give a closed form solution for the optimal θ̂ that minimizes Jµ. Under what circumstances is
this solution unique?
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d) In some applications, we might have some prior knowledge about θ. A simple case is to have a
prior guess, namely θ0, and we would like our estimated θ̂ to be close to θ0. In this case, we can
minimize the cost

Jµ,λ = ∥XT θ̂ − y∥2 + µ∥θ̂∥2 + λ∥θ̂ − θ0∥2,

where µ, λ > 0 are the regularization parameters.

Give a closed form solution for the optimal θ̂ that minimizes Jµ,λ. Under what circumstances is
this solution unique?

e) A practical approach for selecting an action xt at time t involves estimating θ using θ̂t−1 based on
all past observations (xτ , yτ ) for τ = 1, · · · , t−1. This estimation is performed by minimizing Jµ.
Subsequently, xt is chosen to maximize the reward under the assumption that θ = θ̂t−1. After-
ward, we observe the reward yt and incorporate the new pair (xt, yt) into the set of observations.
This procedure can be repeated for as many steps as needed.

It has been demonstrated that if we continue this process for T steps, there exists a probability
of at least 0.99 that the following inequality holds:

∥θ − θ̂T ∥VT
≤ R,

where R is a linear function of
√
d,

√
log T , and √

µ. This means that while we do not know the
exact value of θ, there exists a region within which we can assert, with high probability, that θ
resides. Here, ∥θ − θ̂T ∥VT

represents the norm of the difference between θ and θ̂T with respect
to the matrix VT , defined as VT = X⊤

T XT +µI. The norm of a vector x with respect to a matrix
A is commonly denoted as ∥x∥A =

√
x⊤Ax.

What conditions are required for a matrix A to be valid for defining a norm? In simpler terms,
what condition must matrix A fulfill to ensure that ∥x∥A is defined for every x ∈ Rd and is zero
only if x = 0? Does VT meet this condition?

f) According to the previous part, we know that ∥θ − θ̂T ∥VT
≤ R holds with a high probability.

In the worst case scenario, the inequality holds with equality, i.e., ∥θ − θ̂T ∥VT
= R. In such a

situation, what is the smallest and largest possible values of ∥θ−θ̂T ∥? Here, the norm denotes the
standard Euclidean norm. Your answers should be in terms of R, µ, and possibly the eigenvalues
of X⊤

T XT .
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Solution.

a) We should choose the input that maximizes the inner product x⊤θ, so

x =
θ

∥θ∥
.

b) When T < d, XT is a fat matrix, so it has a non-empty null space. If y ∈ range(XT ), then at
least one exact solution exists—meaning a solution where J = 0. However, since the null space
is non-empty, there will be infinitely many solutions. On the other hand, if y /∈ range(XT ), there
won’t be an exact solution. Yet, once we identify an approximate solution, an infinite array of
additional solutions emerges since we can generate new solutions by adding a member of the null
space to a previous solution. So, the statement (iv) is correct.

c) From the lecture slides, we have that

θ̂ =
(
X⊤

T XT + µI
)−1

X⊤
T y.

This is the unique solution of the problem and it holds for any choice of XT without any further
conditions since X⊤

T XT + µI is positive definite.

d) We can write Jµ,λ as

Jµ,λ =

∥∥∥∥∥∥
XT√

µI√
λI

 θ̂ −

 y
0√
λθ0

∥∥∥∥∥∥
2

= ∥Ãθ̂ − ỹ∥2.

So, the optimal θ̂ is

θ̂ =
(
Ã⊤Ã

)−1

Ã⊤ỹ =
(
X⊤

T XT + (µ+ λ)I
)−1 (

X⊤
T y + λθ0

)
.

This is the unique solution and holds for any choice of XT since X⊤
T XT + (µ + λ)I is positive

definite.

e) A has to be positive definite so that x⊤Ax > 0 for any x ̸= 0. This holds for VT as well since
x⊤VTx = ∥XTx∥2 + µ∥x∥2.

f) ∥θ− θ̂T ∥VT
≤ R is an ellipsoid centered at θ̂T associated with the matrix 1√

R
VT . We are looking

for the points on the boundary of the ellipsoid that are closest to or furthest from the center.
Thus, the minimum and maximum possible values of ∥θ− θ̂T ∥ are the lengths of the smallest and
largest semi-axes of the ellipsoid, given by

√
Rλmin(VT )

−1/2 and
√
Rλmax(VT )

−1/2. Note that
λi(VT ) = λi(X

⊤
T XT + µI) = λi(X

⊤
T XT ) + µ, so

∥θ − θ̂T ∥min =

√
R√

µ+ λmax

(
X⊤

T XT

) , ∥θ − θ̂T ∥max =

√
R√

µ+ λmin

(
X⊤

T XT

)
21.2300. True or false. For each of the statements below, state whether it is true or false. If true, provide a

concise explanation (two or three sentences at most) as to why it holds. If false, give a counterexample.
Correct true/false answers with incorrect/missing explanations will receive half credit.

a) The continuous-time linear dynamical system ẋ = x + Bu is never controllable if u ∈ R, but it
can be controllable if u ∈ R2.
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b) A symmetric matrix A ∈ Rn×n with eigenvectors v1, v2 corresponding to distinct eigenvalues
λ1, λ2 exists such that the matrix P = v1v

⊤
2 has exactly one non-zero eigenvalue.

c) If A ∈ Rm×n, then σi(A
⊤A+ µI) ≥ µ, where σi(·) is the ith singular value.

d) If A ∈ Rn×n and κ(A) = 1, where κ(·) is the condition number of a matrix, then, c ∈ R exists
such that ∥Ax∥ = c∥x∥ for any x ∈ Rn.

e) Let A† be the pseudo-inverse of A ∈ Rm×n. Then, A†Ax = x if x /∈ null(A).

f) Let A† be the pseudo-inverse of A ∈ Rm×n. Then, AA†x = x if x ∈ range(A).

g) Suppose h(t) is the impulse response of a continuous-time linear dynamical system with scalar
inputs and outputs. If h(t) = 0 for t > 5, then the output at time t does not depend on any
input from more than 5 seconds ago.

h) Suppose A =
[
a1 a2 · · · an

]
∈ Rm×n is given with the QR factorization A = QR. If the

top left 3 × 4 block of R is given by

0 1 1 0
0 0 1 1
0 0 0 0

, then a1 = 0, {a2, a4} is orthonormal, and

rank(A) ≤ n− 2.

i) Suppose A ∈ Rn×n and S is a single-point invariant set of the autonomous linear dynamical
system ẋ = Ax. Then, S = {0}.

j) If A ∈ R4×4, then β0, β1, β2, β3 exist such that eA = β0I + β1A+ β2A
2 + β3A

3.

Please read the following problem setup and then answer the questions (k) through (o) based on it.
Consider the following discrete-time time dynamical system with nonlinear output:

x(t+ 1) = Ax(t) + u(t)

y(t) = x(t)⊤Cx(t),

where A,C ∈ Rn×n are symmetric and x(0) = 0.

k) The problem of maximizing the output at time t = 1 with control inputs u(t) such that ∥u(t)∥ ≤ 1
is equivalent to maximizing u(0)⊤Cu(0) subject to the constraint ∥u(0)∥ ≤ 1.

l) Even if C is not positive semi-definite, the maximum value of y(1) is attained when u(0) = λ1q1,
where λ1 is the largest eigenvalue of C with the corresponding unit-length eigenvector q1.

m) Suppose C > 0. As a measure of the output robustness, we are interested in finding the maximum-
norm input u(0) that keeps y(1) ≤ 1. This maximum-norm input is the longest semi-axis of the
ellipsoid E = {x : x⊤Cx ≤ 1}.

n) The maximum-norm input described in the previous part is given by u(0) = λ
−1/2
1 q1, where λ1

is the largest eigenvalue of C with the corresponding unit-length eigenvector q1.

o) Suppose C > 0 and the cost of applying the control input u(t) is u(t)⊤Du(t), where D is symmet-
ric and positive semi-definite. The problem of finding the most costly control input that maintains
y(1) ≤ 1 is equivalent to maximizing u(0)⊤Cu(0) subject to the constraint u(t)⊤Du(t) ≤ 1.
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Solution.

a) True. The controllability matrix is C =
[
B AB

]
=

[
B B

]
. So, for the system to be control-

lable, range(C) = range(B) has to be R2, which can happen if B has at least two columns, which
means that u must be in Rm for some m ≥ 2.

b) False. We know that the non-zero eigenvalues of AB and BA are the same, so if P has a non-zero
eigenvalue, it is given by λ = v⊤2 v1. However, v1 and v2 are eigenvectors of a real and symmetric
matrix corresponding to distinct eigenvalues, which means that v1 ⊥ v2 and that v⊤2 v1 = 0, so
all the eigenvalues of P are zeros.

c) True. λi(A
⊤A + µI) = µ + λi(A

⊤A) ≥ µ, where the inequality is the result of A⊤A being
positive semi-definite. Also, for PSD matrices we have that σi = λi, which yields σi ≥ µ.

d) True. Consider the SVD given by A = UΣV ⊤. If κ = σmax/σmin = 1, then Σ = σI, which
yields that A = σUV ⊤. So, A is a multiple of an orthogonal matrix and ∥Ax∥ = σ∥x∥.

e) False. Consider the SVD given by A = UΣV ⊤. Then, A†A = V V ⊤, so A†Ax = x holds if and
only if x ∈ range(V ) = null(A)⊥. Note that x ∈ null(A)⊥ is not equivalent to x /∈ null(A), so
the statement is incorrect.

f) True. Consider the SVD given by A = UΣV ⊤. Then, AA† = UU⊤, so AA†x = x holds if and
only if x ∈ range(U) = range(A).

g) True. This immediately follows from the fact that the output is the convolution of the input
and the impulse response, i.e., y(t) =

∫ t

0
h(t− τ)u(τ)dτ .

h) True. Let q1, q2 be the first two columns of Q. Then, a1 = 0, a2 = q1, a3 = q1+q2, a4 = q2. This
confirms the first two statements. Also, since

[
a1 · · · a4

]
has no more than two independent

columns, A can have at most n− 2 independent columns, which confirms the third statement.

i) False. S = {x0} is a single-point invariant set if and only if x0 is an equilibrium point, which
means Ax0 = 0 or x0 ∈ null(A).

j) True. This is true because all the higher-order terms in the expansion of eA can be written as
a linear combination of I, A,A2, A3 according to the Cayley-Hamilton theorem.

k) True. This is true since y(1) = x(t)⊤Cx(1) = (Ax(0) + u(0))
⊤
C (Ax(0) + u(0)) = u(0)⊤Cu(0)

l) False. This is only true when λ1 > 0. Otherwise, the optimal input will be u(0) = 0.

m) True. The set of feasible inputs is given by the ellipsoid E , and the input with the maximum-
norm is the longest semi-axis of the ellipsoid.

n) False. The maximum-norm input corresponds to the smallest eigenvalue, not the largest.

o) False. The problem is to maximize the cost, given by u(t)⊤Du(t) ≤ 1, subject to the constraint
of y(1) = u(0)⊤Cu(0) ≤ 1.
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