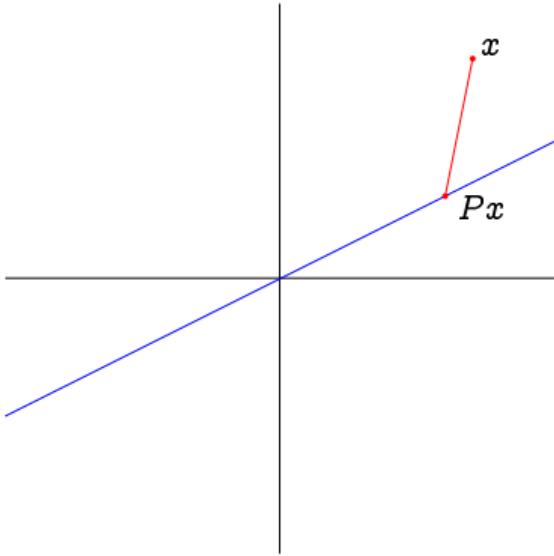


Projectors

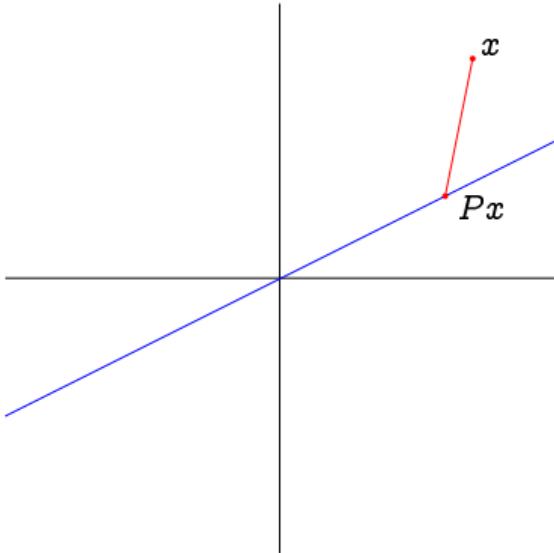
Projectors

- ▶ a square matrix P which satisfies $P^2 = P$ is called a *projector*
- ▶ we say P *projects onto* $\text{range}(P)$
- ▶ if $y \in \text{range}(P)$ then $Py = y$ as expected
- ▶ for any x we have $x - Px \in \text{null}(P)$
 - ▶ because $P(x - Px) = Px - P^2x = 0$
- ▶ and so P *projects along* $\text{null}(P)$



Complementary projectors

- ▶ the matrix $Q = I - P$ is called a *complementary projector* to P
- ▶ it is a projector, because $Q^2 = Q$
- ▶ $\text{null}(Q) = \text{range}(P)$ because
 - ▶ if $Qx = 0$ then $Px = x$ and so $x \in \text{range}(P)$
 - ▶ if $x = Pz$ for some z then
$$Qx = x - Px = Pz - P^2z = 0$$
- ▶ same argument with P and Q swapped gives
$$\text{null}(P) = \text{range}(Q)$$



Subspaces

- ▶ we have the intuitive idea that a projector P projects along one subspace onto another
- ▶ suggests that these subspaces have to span \mathbb{R}^n
- ▶ for any vector x we have

$$x = Px + (I - P)x$$

and so x is the sum of a vector in $\text{range}(P)$ and a vector in $\text{null}(P)$

- ▶ these two subspaces only intersect at 0
 - ▶ because if $x = Pz$ for some z , and $Px = 0$, then $P^2z = Pz = x = 0$
- ▶ so these two subspaces are complementary

Examples

- ▶ *rank one projector*: if a is unit vector, then $P = aa^T$ is a projector
- ▶ *orthogonal projector*: if U is a matrix with orthonormal columns, then $P = UU^T$ is a projector
 - ▶ $\text{range}(P) = \text{range}(U)$ because if $x = Uz$ then $U^T x = U^T Uz = z$, and so $x = Uz = Uu^T x$
- ▶ *general projector*: if $A \in \mathbb{R}^{m \times n}$ and $\text{null}(A) = \{0\}$, then $P = A(A^T A)^{-1} A^T$ is a projector
 - ▶ $\text{range}(P) = \text{range}(A)$, because $x = Az$ implies that $A^T x = A^T Az$ and so $z = (A^T A)^{-1} A^T x$, so $x = Px$

Orthogonal projectors

- ▶ if a projector P satisfies $P = P^T$ it is called an *orthogonal projector*
- ▶ if $P = P^T$ then $\text{range}(P) \perp \text{null}(P)$
- ▶ because $x \in \text{range}(P)$ implies that $x = Pz$ for some z
and $y \in \text{null}(P)$ implies $y \in \text{range}(I - P)$ so $y = (I - P)w$ for some w
then $x^T y = z^T P(I - P)w = 0$

Orthogonal projectors

- ▶ the converse is also true; if P is a projector, and $\text{range}(P) \perp \text{null}(P)$, then $P = P^T$
- ▶ to see this, let $Q = [Q_1 \quad Q_2]$ be an orthogonal matrix, with $\text{range}(Q_1) = \text{range}(P)$ and $\text{range}(Q_2) = \text{null}(P)$, then

$$Q^T P Q = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$$

and so

$$P = Q \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} Q^T$$

which is symmetric