Orthogonality

Stephen Boyd and Sanjay Lall

EE263
Stanford University
Orthonormal set of vectors

set of vectors \(\{u_1, \ldots, u_k\} \subset \mathbb{R}^n \) is

- **normalized** if \(\|u_i\| = 1, \ i = 1, \ldots, k \)
 (\(u_i \) are called **unit vectors** or **direction vectors**)

- **orthogonal** if \(u_i \perp u_j \) for \(i \neq j \)

- **orthonormal** if both

slang: we say ‘\(u_1, \ldots, u_k \) are orthonormal vectors’ but orthonormality (like independence) is a property of a **set** of vectors, not vectors individually

in terms of \(U = [u_1 \ \cdots \ u_k] \), orthonormal means

\[
U^T U = I_k
\]
Orthonormality

an orthonormal set of vectors is independent

- to see this, multiply $Ux = 0$ by U^T
- hence $\{u_1, \ldots, u_k\}$ is an orthonormal basis for

$$\text{span}(u_1, \ldots, u_k) = \text{range}(U)$$

- warning: if $k < n$ then $UU^T \neq I$ (since its rank is at most k)
 (more on this matrix later . . .)
Orthonormal basis for \mathbb{R}^n

A matrix U is called *orthogonal* if

U is square and $U^T U = I$

- the set of columns u_1, \ldots, u_n is an orthonormal *basis* for \mathbb{R}^n
- (you’d think such matrices would be called *orthonormal*, not *orthogonal*)
- it follows that $U^{-1} = U^T$, and hence also $UU^T = I$, i.e.,

$$\sum_{i=1}^{n} u_i u_i^T = I$$
Expansion in orthonormal basis

suppose U is orthogonal, so $x = UU^T x$, i.e.,

$$x = \sum_{i=1}^{n} (u_i^T x) u_i$$

- $u_i^T x$ is called the component of x in the direction u_i
- $a = U^T x$ resolves x into the vector of its u_i components
- $x = Ua$ reconstitutes x from its u_i components
- $x = Ua = \sum_{i=1}^{n} a_i u_i$ is called the (u_i-) expansion of x
Complementary subspaces

if \(Q = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \) and \(Q \) is orthogonal then \(\text{range}(Q_1) \) and \(\text{range}(Q_2) \) are called \textit{complementary subspaces}, because

\[
\text{range}(Q_2) = \text{range}(Q_1)^\perp
\]

- they are orthogonal \textit{i.e.}, every vector in the first subspace is orthogonal to every vector in the second subspace
- every vector in \(\mathbb{R}^m \) can be expressed as a sum of two vectors, one from each subspace
- each subspace is the \textit{orthogonal complement} of the other
Complementary subspaces

\(\text{range}(Q_2) = \text{range}(Q_1)^\perp \)

- **range** \(Q_2 \subset (\text{range } Q_1)^\perp \) because \(Q_1^T Q_2 = 0 \)

- to show **range** \(Q_2 \supset (\text{range } Q_1)^\perp \), suppose \(x \in (\text{range } Q_1)^\perp \), then \(Q_1^T x = 0 \), and since \(x = Q_1 Q_1^T x + Q_2 Q_2^T x \) we have \(x = Q_2 Q_2^T x \) and so \(x \in \text{range } Q_2 \)
Geometric interpretation

if U has orthonormal columns then transformation $w = Uz$

- preserves norm of vectors, i.e., $\|Uz\| = \|z\|
- preserves angles between vectors, i.e., $\angle(Uz, U\tilde{z}) = \angle(z, \tilde{z})$
- we say U is isometric, it preserves distances