Matrix norm

- norm of a matrix

Gain of a matrix in a direction

suppose $A \in \mathbb{R}^{m \times n}$ (not necessarily square or symmetric) for $x \in \mathbb{R}^{n},\|A x\| /\|x\|$ gives the amplification factor or gain of A in the direction x obviously, gain varies with direction of input x

questions:

- what is maximum gain of A (and corresponding maximum gain direction)?
- what is minimum gain of A (and corresponding minimum gain direction)?
- how does gain of A vary with direction?

Matrix norm

the norm of a matrix A is

$$
\|A\|=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}
$$

- also called the operator norm, spectral norm or induced norm
- gives the maximum gain or amplification of A

Matrix norm

$$
\|A\|=\sqrt{\lambda_{\max }\left(A^{\top} A\right)}
$$

- because

$$
\max _{x \neq 0} \frac{\|A x\|^{2}}{\|x\|^{2}}=\max _{x \neq 0} \frac{x^{\top} A^{\top} A x}{\|x\|^{2}}=\lambda_{\max }\left(A^{\top} A\right)
$$

- similarly the minimum gain is given by

$$
\min _{x \neq 0}\|A x\| /\|x\|=\sqrt{\lambda_{\min }\left(A^{\top} A\right)}
$$

Input directions

note that

- $A^{\top} A \in \mathbb{R}^{n \times n}$ is symmetric and $A^{\top} A \geq 0$ so $\lambda_{\text {min }}, \lambda_{\max } \geq 0$
- 'max gain' input direction is $x=q_{1}$, eigenvector of $A^{\top} A$ associated with $\lambda_{\max }$
- 'min gain' input direction is $x=q_{n}$, eigenvector of $A^{\top} A$ associated with $\lambda_{\text {min }}$

Example

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \quad A^{\top} A=\left[\begin{array}{ll}
35 & 44 \\
44 & 56
\end{array}\right] \\
A^{\top} A=\left[\begin{array}{cc}
0.620 & -0.785 \\
0.785 & 0.620
\end{array}\right]\left[\begin{array}{cc}
90.7 & 0 \\
0 & 0.265
\end{array}\right]\left[\begin{array}{cc}
0.620 & -0.785 \\
0.785 & 0.620
\end{array}\right]^{\top}
\end{gathered}
$$

then $\|A\|=\sqrt{\lambda_{\max }\left(A^{\top} A\right)}=9.53$:

$$
\left\|\left[\begin{array}{c}
0.620 \\
0.785
\end{array}\right]\right\|=1, \quad\left\|A\left[\begin{array}{c}
0.620 \\
0.785
\end{array}\right]\right\|=\left\|\left[\begin{array}{c}
2.19 \\
5.00 \\
7.81
\end{array}\right]\right\|=9.53
$$

min gain is $\sqrt{\lambda_{\text {min }}\left(A^{\top} A\right)}=0.514$:

$$
\left\|\left[\begin{array}{c}
-0.785 \\
0.620
\end{array}\right]\right\|=1, \quad\left\|A\left[\begin{array}{c}
-0.785 \\
0.620
\end{array}\right]\right\|=\left\|\left[\begin{array}{c}
0.45 \\
0.12 \\
-0.21
\end{array}\right]\right\|=0.514
$$

for all $x \neq 0$, we have

$$
0.514 \leq\|A x\| /\|x\| \leq 9.53
$$

Properties of the matrix norm

satisfies the usual properties of a norm:

- scaling: $\|c A\|=|c|\|A\|$ for $c \in \mathbb{R}$.
- triangle inequality: $\|A+B\| \leq\|A\|+\|B\|$.
- definiteness: $\|A\|=0 \Longleftrightarrow A=0$.

Properties of the matrix norm

also

- for any $x,\|A x\| \leq\|A\|\|x\|$
- $\|A\|=\left\|A^{T}\right\|$
- consistent with vector norm: matrix norm of $a \in \mathbb{R}^{n \times 1}$ is $\sqrt{\lambda_{\max }\left(a^{\top} a\right)}=$ $\sqrt{a^{\top} a}$
- norm of product: $\|A B\| \leq\|A\|\|B\|$
- $\|A\| \geq \max _{i} \max _{j}\left|a_{i j}\right|$

Frobenius norm

$$
\|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}}
$$

- called the Frobenius norm
- $\|A\| \leq\|A\|_{F}$
- $\|A\|_{F}=\left(\operatorname{Tr}\left(A^{\top} A\right)\right)^{\frac{1}{2}}$

