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Estimation given a PDF

I Suppose x is an Rn-valued random variable with pdf px.

I One can predict or estimate the outcome as follows

I Given cost function c : Rn � Rn ! R

I pick estimate x̂ to minimize E c(x; x̂)

I We will look at the cost function
c(x; x̂) = kx� x̂k2

I Then the mean square error (MSE) is

E
�
kx� x̂k2

�
=

Z
kx� x̂k2px(x) dx

2



Minimizing the MSE

I let’s find the minimum mean-square error (MMSE) estimate of x; we need to solve

min
x̂

E
�
kx� x̂k2

�

I we have

E
�
kx� x̂k2

�
= E

�
(x� x̂)T (x� x̂)

�

= E
�
x
T
x� 2x̂Tx+ x̂

T
x̂
�

= Ekxk2 � 2x̂T Ex+ x̂
T
x̂

I differentiating with respect to x̂ gives the optimal estimate

x̂mmse = Ex
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The MMSE estimate

I the minimum mean-square error estimate of x is

x̂mmse = Ex

I its mean square error is
E
�
kx� x̂mmsek

2
�
= trace cov(x)

I since E
�
kx� x̂mmsek

2
�
= E

�
kx� Exk2

�
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The estimation problem

I Suppose x; y are random variables, with joint pdf p(x; y).

I We measure y = ymeas.

I We would like to find the MMSE estimate of x given y = ymeas.

I The estimator is a function � : Rm ! R
n.

I We measure y = ymeas, and estimate x by x̂est = �(ymeas)

I We would like to find the function � which minimizes the cost function

J = E
�
k�(y)� xk2

�
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Notation

I We’ll use the following notation

I py is the marginal or induced pdf of y

p
y(y) =

Z
p(x; y) dx

I pjy is the pdf conditioned on y

p
jy(x; y) =

p(x; y)

py(y)
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The MMSE estimator

I The mean-square-error conditioned on y is econd(y), given by

econd(y) =

Z
k�(y)� xk2 pjy(x; y) dx

I Then the mean square error J is given by

J = E
�
econd(y)

�
I because

J =

Z Z
k�(y)� xk2 p(x; y) dx dy

=

Z
p
y(y) econd(y) dy
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The MMSE estimator

I We can write the MSE conditioned on y as

econd(ymeas) = E
�
k�(y)� xk2 j y = ymeas

�

I For each ymeas, we can pick a value for �(ymeas)

I So we have an MMSE prediction problem for each ymeas
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The MMSE estimator

I recall the mean-variance decompositon

E
�
kxk2

�
= E

�
kx� Exk2

�
+ kExk2

I Apply the MVD to z = �(y)� x conditioned on y = w to give

econd(w) = E
�
k�(y)� xk2 j y = w

�
= E

�
kx� h(w)k2 j y = w

�
+ k�(w)� h(w)k2

where h(w) is the mean of x conditioned on y = w

h(w) = E(x j y = w)

I To minimize econd(w) we therefore pick
�(w) = h(w)
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The error of the MMSE estimator

I With this choice of estimator

econd(w) = E
�
kx� h(w)k2 j y = w

�
= trace cov(x j y = w)
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The MMSE estimator

I we have

�mmse(ymeas) = E(x j y = ymeas)

econd(ymeas) = trace cov(x j y = ymeas)

I The estimate only depends on the conditional pdf of x j y = ymeas

I The means and covariance are those of the conditional pdf

I The above formulae give the MMSE estimate for any pdf on x and y
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MMSE estimation for Gaussians

Suppose

�
x

y

�
� N (�;�) where

� =

�
�x

�y

�
� =

�
�x �xy
�Txy �y

�

We know that the conditional density of x j y = ymeas

is N (�1;�1) where

�1 = �x +�xy�
�1

y (ymeas � �y)

�1 = �x � �xy�
�1

y �Txy
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MMSE estimation for Gaussians

I The MMSE estimator when x; y are jointly Gaussian is

x̂ = �mmse(ymeas) = �x +�xy�
�1

y (ymeas � �y)

I with error
E
�
kx� x̂mmsek

2
�� y = ymeas

�
= trace

�
�x � �xy�

�1

y �Txy
�

I The conditional mean square error is independent of y; a special property of Gaussians

I The estimate x̂mmse is an affine function of ymeas
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