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MMSE Estimation



Estimation given a PDF

» Suppose z is an R™-valued random variable with pdf p®.

» One can predict or estimate the outcome as follows

» Given cost function ¢ : R™ x R™ — R

» pick estimate & to minimize E ¢(z, )

» We will look at the cost function
c(z,8) = ||z — &|°

» Then the mean square error (MSE) is

E(llz - 4|°) = /nw 5P (2) de



Minimizing the MSE

» let’s find the minimum mean-square error (MMSE) estimate of z; we need to solve
miin E(||:z - :i||2)
» we have
E(llz — 2°) = E((z — 2)"(z — &)
=E(z"z —2i"z + 372)
=E|z||* — 22T Ez + 272

» differentiating with respect to Z gives the optimal estimate

Zmmse = Ex



The MMSE estimate

» the minimum mean-square error estimate of z is

Zmmse = Ex

» its mean square error is
E(llz — Zmmsel|”) = trace cov(z)

» since E(||z — Zmmsel|*) = E(|jz — Ex||?)



The

estimation problem

Suppose z,y are random variables, with joint pdf p(z, y).

We measure ¥ = Ymeas-

We would like to find the MMSE estimate of & given ¥ = Ymeas-
The estimator is a function ¢ : R™ — R™.

We measure Y = Ymeas, and estimate z by Zest = P(Ymeas)

We would like to find the function ¢ which minimizes the cost function

J = E(ll¢(y) — =%




Notation

» We'll use the following notation

» pY is the marginal or induced pdf of y
P) = [ plenn)ae

» plY is the pdf conditioned on y
p(z,9)
p¥(y)

p¥(z,y) =



The MMSE estimator

» The mean-square-error conditioned on y is econd(Y), given by
econd(y) = /||¢(y) —z|)?p¥(z,y)dz

» Then the mean square error J is given by

J=E (econd (y))

» because

= / / 16(3) — 2ll* p(z, ) dz dy

= / () econd(y) dy



The MMSE estimator

» We can write the MSE conditioned on y as
€cond (Ymeas) = E(||¢(y) - $||2 ly = ymeaS)

» For each Ymeas, We can pick a value for ¢(Ymeas)

» So we have an MMSE prediction problem for each Ymeas



The MMSE estimator

» recall the mean-variance decompositon
E(llzl|*) = E(|lz — Ez|*) + [[Ez]”
» Apply the MVD to z = ¢(y) — z conditioned on y = w to give

econd(w) = E(||$(y) — 2l* |y = w)
=E(lle — h(w)|* |y = w) + [|¢(w) — A(w)]|”

where h(w) is the mean of = conditioned on y = w

h(w) = E(z |y = w)

» To minimize econd(w) we therefore pick



The error of the MMSE estimator

» With this choice of estimator

econd(w) = E(Hx - h(w)||2 | Y= w)

= tracecov(z |y = w)
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The

MMSE estimator

we have
¢mmse(ymeas) = E(x | Y= ymeas)
econd(ymeas) = trace CO\I(CI) | Yy = ymeas)
The estimate only depends on the conditional pdf of |y = Ymeas

The means and covariance are those of the conditional pdf

The above formulae give the MMSE estimate for any pdf on z and y
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MMSE estimation for Gaussians
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MMSE estimation for Gaussians

» The MMSE estimator when z,y are jointly Gaussian is

z= ¢mmse(ymeas) = Mz + Z:zyz;l(ymeas - /er)

» with error
E(llz = &mmsell” | ¥ = Ymeas) = trace(Tz — Doy T, ' 23, )

» The conditional mean square error is independent of y; a special property of Gaussians

» The estimate Zmmse is an affine function of Ymeas
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