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Completion of squares

I the completion of squares formula for quadratic polynomials is
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I when a > 0, this tells us the minimum with respect to x for fixed y
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I this also gives a test for global positivity:
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Completion of squares for matrices

I if A 2 Rn�n and D 2 Rm�m are symmetric matrices and B 2 Rn�m, then�
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I compare with
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I gives a general formula for quadratic optimization; if A > 0, then
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and the minimizing x is xopt = �A
�1By
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Block LDU matrix decomposition

I the completion of squares formula gives a useful matrix decomposition�
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I since this holds for all x; y,�
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holds whenever A is invertible
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Inverse of a block matrix

I the matrix S = D � CA�1B is called the Schur complement of A

I then
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Inverse of a block matrix

I also holds for asymmetric matrices�
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I this decomposition is easy to invert�
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Inverse of a sum

I we can also complete the square to minimize w.r.t. y instead of x, which gives another formula, which
holds whenever D is invertible�
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called the matrix inversion lemma or Sherman-Morrison-Woodbury formula
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Useful matrix identities

A(I + A)�1 = I � (I + A)�1

because (I + A)(I + A)�1 = I so

(I + A)�1 + A(I + A)�1 = I
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More useful matrix identities

(I + AB)�1 = I � A(I +BA)�1B

verify this directly; we have
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= I

I I + AB is invertible if and only if I +BA is

I true for any A and B, not just square ones
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And more useful matrix identities

A(I +BA)�1 = (I + AB)�1A

because B(I + AB) = (I +BA)B

I called push-through identity

I A on the left pushes in, and pushes out A on the right
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