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The linear model

I the linear model
y = Ax+ w

I x and w are independent

I The matrix A is m� n

I x � N (0;�x) and w � N (0;�w)

I We measure y = ymeas and would like to estimate x
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The linear map

I since y = Ax+ w, we have �
x

y

�
=

�
I 0

A I

��
x

w

�

I We have (x; y) is jointly Gaussian, with covariance�
�x �xy
�yx �y

�
= cov

�
x

y

�

=

�
I 0

A I

��
�x 0

0 �w

��
I 0

A I

�T

=

�
�x �xA

T

A�x A�xA
T +�w

�

I we have cov(y) = A�xA
T +�w where

I A�xAT is ‘signal covariance’

I �w is ‘noise covariance’
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Linear measurements with Gaussian noise

I The MMSE estimate of x given y = ymeas is

x̂mmse = �xA
T (A�xA

T +�w)
�1ymeas

I because we know x̂mmse = �xy�
�1

y ymeas

I The matrix L = �xA
T (A�xA

T +�w)
�1 is called the estimator gain
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Example: linear measurements with Gaussian noise

Suppose y = 2x+ w, with

I prior covariance cov(x) = 1

I noise covariance cov(w) = 3

I the estimator is
xmmse =

2ymeas
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I The MMSE estimator gives a smaller answer than just in-
verting A,

jxmmsej � jA�1ymeasj
since we have prior information about x
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Non-zero means

I Suppose x � N (�x;�x) and w � N (�w;�w).

I The MMSE estimate of x given y = ymeas is

x̂mmse = �x +�xA
T (A�xA

T +�w)
�1(ymeas � A�x � �w)
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The signal to noise ratio

I Suppose where x, y and w are scalar, and y = Ax+ w. The signal-to-noise ratio is

s =

p
A2�xp
�w

I Commonly used for scalar w; x; y; no use in vector case

I In terms of s, the MMSE estimate is

xmmse = �x +
A�x

A2�x +�w
(ymeas � A�x)

=
1

1 + s2
�x +

s2

1 + s2
A�1ymeas
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Scalar systems and the SNR

I The MMSE estimate is

xmmse =
1

1 + s2
�x +

s2

1 + s2
A�1ymeas

I let � =
1

1 + s2
, then xmmse = ��x + (1� �)A�1y

I a convex linear combination of the prior mean and the least-squares estimate

I when s is small, xmmse � �x, the prior mean

I when s is large, xmmse � A�1y, the least-squares estimate of y
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Example: small noise

I Suppose y = 2x+ w, with

I prior covariance cov(x) = 1

I noise covariance cov(w) = 0:4; signal is large compared to
noise

I SNR s =

p
A2�xp
�w

� 3:2

I Estimate is

xmmse =
s2

1 + s2
A�1ymeas

� 0:9A�1ymeas

i.e., close to ymeas=2

9



−2 0 2
−6

−4

−2

0

2

4

6
y=Ax

x=Ly

Example: large noise

I Suppose y = 2x+ w, with

I prior covariance cov(x) = 1

I noise covariance cov(w) = 20; signal is small compared to
noise

I SNR s =

p
A2�xp
�w

� 0:45

I Estimate is

xmmse =
s2

1 + s2
A�1ymeas

� 0:17A�1ymeas

i.e., closer to 0 for all ymeas
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The posterior covariance

I The posterior covariance of x given y = ymeas is

cov
�
x
�� y = ymeas

�
= �x � �xA

T (A�xA
T +�w)

�1A�x

I above follows because
cov

�
x
�� y = ymeas

�
= �x � �xy�

�1

y �yx

I We can use this to compute the MSE since

E
�
kx� x̂mmsek2

�� y = ymeas
�
= trace cov

�
x
�� y = ymeas

�
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The posterior covariance and SNR

I For scalar problems, the posterior covariance of x given y = ymeas is

cov
�
x
�� y = ymeas

�
=

�x
1 + s2

I The uncertainty (covariance) in x is reduced by the factor
1

1 + s2
by measurement
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Example: navigation

r2

r3

r4

r1
(p; q)

(u1; v1)

(u2; v2)

(u3; v3)

(u4; v4)

I x =

�
p

q

�
our location, we measure distances ri to m beacons at points (ui; vi)

I assume p; q are small compared to ui; vi. then, approximately y = Ax

I A 2 Rm�2, ith row of A is the transpose of unit vector in the direction of beacon i

I y =

2
64

p
u2
1
+ v2

1
� r1

...p
u2m + v2m � rm

3
75 measured vector of distances
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Example: navigation

I here A 2 R3�2 with A =

2
4 b1
b2
b3

3
5

I y = Ax. Each bi is a unit vector.

I Prior information is x � N
��

4

4

�
;

�
2 0

0 2

��

I y is measured; yi is range measurement
in the direction bi with noise w added

I beacons at

�
50

0

�
;

�
20

50

�
;

�
�50
�50

�

I figure shows prior 90% confidence ellipsoid
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Example: posterior confidence ellipsoids

Posterior confidence ellipsoids for two different possible noise covariances.
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Alternative formula

I There is another way to write the posterior covariance:

cov
�
x j y = ymeas

�
=
�
��1x + AT��1w A

�
�1

I follows from the Sherman-Morrison-Woodbury formula

(A�BD�1C)�1 = A�1 + A�1B(D � CA�1B)�1CA�1

I This is very useful when we have fewer unknowns than measurements; i.e., �x is smaller that A�xAT
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Alternative formula

I There is also an alternative formula for the estimator gain

L = (��1x + AT��1w A)�1AT��1w

I Because

L = �xA
T (A�xA

T +�w)
�1

= �xA
T (��1w A�xA

T + I)�1��1w

= (�xA
T��1w A+ I)�1�xA

T��1w by push-through identity

= (AT��1w A+��1x )�1AT��1w
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Comparison with least-squares

I The least-squares approach minimizes

ky � Axk2 =
mX
i=1

�
yi � aTi x

�
2

where A =
�
a1 a2 : : : am

�T
I suppose instead we minimize

mX
i=1

wi
�
yi � aTi x

�
2

where w1; w2; : : : ; wm are positive weights
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Weighted norms

I More generally, let’s look at weighted norms

I contours of the 2-norm
kxk2 =

p
xTx

I contours of the weighted-norm

kxkW =
p
xTWx

= kW 1

2 xk2

where W =

�
2 1

1 4

�
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Weighted least squares

I the weighted least-squares problem; given ymeas 2 Rm,

minimize kymeas � AxkW

I assume A 2 Rm�n, skinny, full rank, and W 2 Rm�m and W > 0

I (by differentiating) the optimum x is

xwls = (ATWA)�1ATWymeas
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Weighted least squares

Axest

range(A)

ymeas

R
m

I if there is no noise, y lies in rangeA

I the weighted least-squares estimate xwls minimizes

kymeas � AxkW

I Axwls is the closest (in weighted-norm) point in rangeA to ymeas
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MMSE and weighted least squares

I suppose we choose weight W = ��1w ; then WLS solution is

xwls = (AT��1w A)�1AT��1w ymeas

I compare with MMSE estimate when x � N (0;�x) and w � N (0;�w)

xmmse = (��1x + AT��1w A)�1AT��1w ymeas

I as the prior covariance �x !1, the MMSE estimate tends to the WLS estimate

I if �w = I then MMSE tends to usual least-squares solution as �x !1

I the weighted norm heavily penalizes the residual y � Ax in low-noise directions
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