EE263, Stanford University Sanjay Lall

The linear model



The linear model

» the linear model
y=Az+w

» z and w are independent

» The matrix Aism X n

v

z ~N(0,%z) and w ~ N(0,Z)

» We measure ¥y = yYmeas and would like to estimate z



The linear map

» since y = Az + w, we have
z| | I O z
y| |A I||w
» We have (z, y) is jointly Gaussian, with covariance
Zo Doy | _ oy | ®
Yye Xy Y
[1 0]z o][r o]
T|A T 0 Xy A I

= 2. AT
T | AD, AZLAT 4+ 3.

» we have cov(y) = AT AT + 3, where
» AR, AT is ‘'signal covariance’

» X is ‘noise covariance’



Linear measurements with Gaussian noise

» The MMSE estimate of z given ¥ = Ymeas is

Zmmse = EEAT(AEEAT + z:111)71:’Jmeas
> because we know Zmmse = Ty Ty ' Ymeas

» The matrix L = EEAT(AEEAT + ):)w)*1 is called the estimator gain



Example: linear measurements with Gaussian noise

6
Suppose y = 2z + w, with
. . 4t
» prior covariance cov(z) =1
» noise covariance cov(w) = 3 ol
» the estimator is
- _ 2ymeas
mmse —7 or

» The MMSE estimator gives a smaller answer than just in-
verting A, -2r
|$mmse| S |A_1ymeas|

since we have prior information about z 4
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Non-zero means

» Suppose z ~ N (tz, Bz) and w ~ N (fhw, Zw).

» The MMSE estimate of z given ¥ = Ymeas is

Zmmse = Uz + EmAT(AEmAT + z)‘Lu)_:l(ymeas — A}/,z — ,U,w)



The signal to noise ratio

» Suppose where z, y and w are scalar, and y = Az + w. The signal-to-noise ratio is

» Commonly used for scalar w, z, y; no use in vector case

» In terms of s, the MMSE estimate is

Ay,
mmse — Mz Towa L w  (YUmeas — Ao
z ot o5 . Y pa)

S
= m#m + 1+ 52 A Ymeas




Scalar systems and the SNR

» The MMSE estimate is ,

AT ! Ymeas

Tmmse — T— M=z

s
1+ s2 + 1+ s2

» let 6 = then Tmmse = Oz + (1 — G)A_ly

1+ s2’

» a convex linear combination of the prior mean and the least-squares estimate
» when s is small, Zmmse & Lz, the prior mean

» when s is large, Zmmse & A1y, the least-squares estimate of
g Yy q Yy



Example: small noise

» Suppose y = 2z + w, with

» prior covariance cov(z) =1

» noise covariance cov(w) = 0.4; signal is large compared to
noise

» SNRs= ——— ~ 3.2

» Estimate is
32 1
14—782 Ymeas

~ 0.9A  Ymeas

Tmmse —

i.e., close to Ymeas/2

o}

4}
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Example: large noise

» Suppose y = 2z + w, with

» prior covariance cov(z) =1

» noise covariance cov(w) = 20; signal is small compared to
noise

VA2S,
V8w

» Estimate is

» SNRs = ~ 0.45

Tmmse —

~ 0.17A™  Ymeas

i.e., closer to 0 for all Ymeas

2t

4}

-6
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The posterior covariance

» The posterior covariance of z given ¥ = Ymeas is

oV (T | Y = Ymeas) = Do — Do AT (AT AT + Do) 1AL,

» above follows because
cov(:c |y = ymeas) =Yz — Zzyzglﬂyz

» We can use this to compute the MSE since

E(||:c — :Emmse||2 | y= ymeas) = trace cov(a: | Y= ymeas)
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The posterior covariance and SNR

» For scalar problems, the posterior covariance of z given ¥ = Ymeas IS

cov(Z | Y = Ymeas) =

. . . . 1
» The uncertainty (covariance) in z is reduced by the factor (e

P
1+s2

5 by measurement
s
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Example: navigation

(71,3, 7)3)

(U47 1)4)0/7)4 |

> = |:Z] our location, we measure distances r; to m beacons at points (ui, v;)

» assume p, q are small compared to u;, v;. then, approximately y = Az

> A€ R™*? ith row of A is the transpose of unit vector in the direction of beacon %

) 2
uy +vi—1m1

> y= measured vector of distances

/02 2
um+vm_7'm
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Example: navigation

b1
here A € R3*? with A= {bz

y = Az. Each b; is a unit vector.

Prior information is £ ~ N( { i} , 2.0 ])

y is measured; y; is range measurement
in the direction b; with noise w added

beacons at 50 20 =50
0|’ |5B0]|" | =50

figure shows prior 90% confidence ellipsoid

1 - ]
I Prior mean
actual location
0

3 4 5 6 7
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Example: posterior confidence ellipsoids

Posterior confidence ellipsoids for two different possible noise covariances.

w

N

0.01

actual location
I VMSE estimate

0.01

5 6 7

actual location
I VMSE estimate

4 5 6 7
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Alternative formula

» There is another way to write the posterior covariance:

CO\I(:{: | Y= ymeas) = (Z;l + ATz;lA)71

» follows from the Sherman-Morrison-Woodbury formula

(A-BD'C)'=A'+A'B(D-CcA'B)'cA!

» This is very useful when we have fewer unknowns than measurements; i.e., &, is smaller that AN AT
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Alternative formula

» There is also an alternative formula for the estimator gain
L=(S; 4+ A2t A)tATs !
» Because
L=35,AT(AD AT + ) !
=0 AT (D, AT AT + 1) syt
= (B ATSP A4+ 1)T'8, ATS,Y by push-through identity
=(ATS A+ ;)T AT
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Comparison with least-squares

» The least-squares approach minimizes

m
2 T _\2
lly — Azl = (v: — af'z)
i=1
T
where A = [al as ... am]
» suppose instead we minimize
m
T 2
E ’wi(yi —a; -’E)
i=1
where w1, wa, ..., wn are positive weights
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Weighted norms

» More generally, let's look at weighted norms

» contours of the 2-norm

llz[ls = VaTe
» contours of the weighted-norm
lz|]|lw = VeTWz
1
=[W2z|;
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Weighted least squares

» the weighted least-squares problem; given Ymeas € R™,

minimize ||ymeas - AwHW

» assume A € R™*™, skinny, full rank, and W € R™*™ and W > 0
» (by differentiating) the optimum z is

Twts = (ATWA) 7 AT W ymeas
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Weighted least squares

Rm

range(A) —

» if there is no noise, y lies in range A
» the weighted least-squares estimate z,1s minimizes

||ymeas - A$||W

» Az is the closest (in weighted-norm) point in range A to Ymeas
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MMSE and weighted least squares

b suppose we choose weight W = 25*; then WLS solution is
zuts = (AT25" A) T ATEL Ymeas
» compare with MMSE estimate when z ~ N (0, Z.) and w ~ N (0, Z)
Tmmse = (T2 + ATE, A) AT  Ymeas
» as the prior covariance ; — oo, the MMSE estimate tends to the WLS estimate

» if 2y = I then MMSE tends to usual least-squares solution as ©; — oo

» the weighted norm heavily penalizes the residual y — Az in low-noise directions
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