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Graph Embeddings and Spectral Methods

» weighted graphs: terminology and representations
» graph Laplacian and Dirichlet energy
» spectral graph embedding (scalar and vector)

» node ordering and graph partitioning



Graphs: Nodes and Edges

» A graph G = (V, E) consists of:
» a set of n nodes (or vertices) V = {1,...,n}

» a set of m edges (or links) E = {{,7} | nodes 1,3 are connected}

» Nodes ¢ and j are adjacent (neighbors) if {i,5} € E.
» Neighbor set of i: N(i) = {5 | {¢,7} € E}
» Degree of node i: d; = |N(3)|

» Undirected graph: {i,3} is the same as {7,1}.



Weighted Graphs and Adjacency Matrix

» In a weighted graph, each edge {%, 7} € E has a positive weight W;; > 0.
» W;; = W;; (symmetric).
» W;; =0if {i,571 ¢ E.
» Diagonal entries W;; = 0.

» The weighted adjacency matrix W € R™*™ completely specifies the graph.
» 2m non-zero entries (for symmetric W).

» Weighted degree of node i: d} = Z{i,j}GE Wi;.

» In matrix notation: dV¥ = W1.



Example weighted graph

66 0 72 0 79
27 92 0 79 O

» n =>5 nodes, m = 7 edges

» Weighted degrees: d" = (10.9,14.9,11.3,21.7,19.8)



Example graph drawing styles




Some named graphs

» An empty graph has no edges, i.c., E = 0.

» A full or complete graph has an edge between every pair of nodes.



Some named graphs

» A chain graph P, is a graph with n nodes arranged in a line. Adjacency matrix is tridiagonal, e.g.for
unweighted P,
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» A cycle graph C,. Similar to a path, but endpoints are connected.
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Some named graphs

» A mesh or grid graph
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Geometric graphs

» in some applications, we create a graph from a collection of vectors z; € R™
» We create an edge whenever ||z; — z;||2 < d, where d is less than a critical distance

» left d = 0.3, right d = 0.4



Nearest neighbor graphs

~\

N

» we have an edge between ¢ and j if 7 is among the k-nearest neighbors of 5 or vice versa.
» Here k is a parameter that we choose.

» When k = 1 the graph is called the nearest neighbor graph. Left k =1, right k = 2

10



Choosing a method

» the choice of method (and parameters) depends on the final application
» all methods share the same basic idea

» edges of the graph indicate that nodes are ‘similar’, with higher weight indicating a higher degree of
similarity.

» small ||z; — z;||2 indicates that nodes ¢ and 7 are similar
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Graph Connectivity and Paths
:_I—o—@

A path of length L: sequence of nodes %1,...,%r4+1 where {i;,2;41} € E.

v

» Nodes ¢ and j are pathwise connected if a path exists between them.

A graph is connected if every pair of nodes is pathwise connected.

v

» Powers of unweighted adjacency matrix: (W¥);; is number of paths of length L between 1, ;.

» The z, 7 entry of the matrix
Z=I+W+W>+. ..+ W™

gives the number of paths of length at most n — 1 between nodes 7 and j.
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Connected components

» a graph partitions the nodes into groups of mutually pathwise connected nodes.
» that is, we have subsets of nodes Gi,...,Gx C{1,...,n} with

GiNG; =0 for i # 7, Gi1U---UGk ={1,...,n}.

» Within each group of nodes, every node is pathwise connected to every other one
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Incidence matrix (directed graphs)

» For an undirected graph, assign arbitrary directions to edges to form a network.

» The n x m incidence matrix A has entries:

1 edge j points to node 2
Ai; = —1 edge j points from node

0 otherwise
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Node potentials and Dirichlet energy

» Assign a scalar value z; to each node i: node potentials z € R™.

» Dirichlet energy D(z) measures smoothness of z across the graph.

D(z) = % > Wii(e: - 25)°

%3=1

» Small D(z) means z; & z; for adjacent nodes (especially with large W;;).
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The Graph Laplacian Matrix

» The Dirichlet energy is a quadratic form
D(z) =z' Lz

» L is the Laplacian matrixx: L =D — W.

» D = diag(d") is the diagonal matrix of weighted degrees.
» Entries: L;; = d)Y, Lij = —W;; for 1 #£ 3.

» L is symmetric and positive semi-definite (PSD).

» Not positive definite (PD), since L1 = 0 (hence D(1) = 0).
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Laplacian matrix

let's establish L =D — W

D(z) = (1/2) Z Wi (e — 25)°

=(1/2) Z Wij(z3 — 2ziz; + z7)
=(1/2) Z <ZWH> Z Wijziz; + (1/2) Z <ZW1__,>

T T
=z Dz —z " Wz.

we use that fact that the first and last sums are both equal to >~ d;z?.
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Laplacian from Incidence Matrix

» let w be the vector of edge weights.
» the Laplacian can also be defined using the incidence matrix A

L = Adiag(w)A"

» this definition is independent of the arbitrary edge orientations chosen for A.
» multiplication by AT gives a vector of potential differences

» when w = 1 then L is the Gram matrix of AT
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Nullspace of the Laplacian and connectivity

If Lz = 0, then D(z) = 0, implying z; = z; for all adjacent nodes.
By extension, z; = z; for all pathwise connected nodes.

If the graph is connected:
N(L) = span(1)

dim N (L) = 1. Smallest eigenvalue A\; = 0, with eigenvector 1.
If the graph is disconnected with K components:

dmN(L) =K

Number of zero eigenvalues of L equals number of connected components.
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Scalar spectral embedding problem

» Assign node potentials £ € R™ (an embedding) to minimize Dirichlet energy.
» Smoothness: adjacent nodes should have similar values (small |z; — z;]).

» Constraints needed to prevent trivial or arbitrary solutions:

» Centering: 1Tz = 0 (mean of potentials is zero, due to shift invariance of D(z)).

B Scaling: ||z||2 = n (RMS value of potentials is one, prevents z = 0).

» we would like to solve
minimize z'Lz
subject to 1Tz =0

llzlle = v/n
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Eigendecomposition of the Laplacian

» eigenvalues of Lare 0 = A1 < A2 < ... < Aj.

» A; = 0 has eigenvector 1.

» The second smallest eigenvalue )z is the Fiedler eigenvalue (AF).

» Its associated eigenvector v© (or v2) is the Fiedler eigenvector.

» 170" =0and ||oF|]2 = 1.
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Scalar spectral embedding solution

» recall the optimization problem, where A is symmetric and A1 < Az

minimize zT Az

subject to vTz =0

llzll2 = 1,
where v; is an eigenvector associated with the smallest eigenvalue A;
» the normalized second smallest eigenvector vs is a solution
» for scalar spectral embedding, the solution is
se F
z*¢ = /nv

» z°¢ is the spectral embedding for the weighted graph.

» The optimal value of D(z) is nAF. Small AT indicates a graph is ‘almost disconnected’.
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Example: scalar spectral embedding

The scalar spectral embedding is:

0.0

0.5

1.0

1.5
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Applications: node ordering

» Node ordering problem: Assign integers 1,...,n to nodes as new indices o.

v

Goal: edges connect nodes with nearby indices, especially for high weights.

minimize o' Lo
subjectto o € Sp

» Exact solution is computationally hard (n! permutations).

v

Approximate solution (spectral ordering): Sort entries of z°¢.

» Polishing: Local search (swapping adjacent indices) to improve Dirichlet energy.
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Applications: Permuting a correlation matrix

» given a correlation matrix C, create a graph, either connect based on a threshold, or use

Ci; +1\"
W"J:( P )

» spectral ordering ensures that highly-correlated items are near each other

» application: LU or Cholesky solvers have reduced fill-in
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Applications: Graph bisection

» Node bisection problem: Partition nodes into two groups A, B.
» Encode partition: z, = —-1if1€ A, z;, =1if 1 € B.
» Balanced bisection: |A| =|B| =n/2 = 1Tz =0.

» Cut weight: sum of weights of edges crossing the cut.

minimize z'Lz
subject to z; € {-1,1}, fori=1,...,n
1'z=0

» Exact solution is NP-hard.

» Approximate solution (spectral bisection): Take z*¢, assign nodes with smallest n/2 values to A, rest
to B.
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Vector Graph Embedding

» Assign a k-dimensional vector z; € R* to each node i.
» Form an n x k matrix X, where rows are z, .

» Objective is to minimize the sum of squared differences between adjacent node vectors:

1 n
D(X) =3 > Wisllzi - a5l3

2,7=1

» This can be expressed in terms of the Laplacian: D(X) = trace(X"LX).

» Constraints:

» Centering: XT1 = 0 (mean of each component is zero).

» Standardization: %XTX = I (components are orthogonal and scaled).
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Vector spectral embedding solution

» The columns of the optimal X are proportional to the k eigenvectors of L corresponding to the k smallest

non-zero eigenvalues (vz, ..., Vkt1).
z]
X [’Uz . ’Uk+1]

zr,

» Graph drawing: k = 2 allows nodes to be plotted in a 2D plane based on their embedding vectors.
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