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Graph Embeddings and Spectral Methods

I weighted graphs: terminology and representations

I graph Laplacian and Dirichlet energy

I spectral graph embedding (scalar and vector)

I node ordering and graph partitioning

1



Graphs: Nodes and Edges

I A graph G = (V;E) consists of:

I a set of n nodes (or vertices) V = f1; : : : ; ng

I a set of m edges (or links) E = ffi; jg j nodes i; j are connectedg

I Nodes i and j are adjacent (neighbors) if fi; jg 2 E.

I Neighbor set of i: N(i) = fj j fi; jg 2 Eg

I Degree of node i: di = jN(i)j

I Undirected graph: fi; jg is the same as fj; ig.
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Weighted Graphs and Adjacency Matrix

I In a weighted graph, each edge fi; jg 2 E has a positive weight Wij > 0.

I Wij = Wji (symmetric).

I Wij = 0 if fi; jg =2 E.

I Diagonal entries Wii = 0.

I The weighted adjacency matrix W 2 Rn�n completely specifies the graph.

I 2m non-zero entries (for symmetric W ).

I Weighted degree of node i: dw
i =

P
fi;jg2E

Wij .

I In matrix notation: dw = W1.
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Example weighted graph
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I n = 5 nodes, m = 7 edges

I Weighted degrees: dw = (10:9; 14:9; 11:3; 21:7; 19:8)
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Example graph drawing styles
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Some named graphs

I An empty graph has no edges, i.e., E = ;.

1 2

3 4

I A full or complete graph has an edge between every pair of nodes.

1 2

3 4
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Some named graphs

I A chain graph Pn is a graph with n nodes arranged in a line. Adjacency matrix is tridiagonal, e.g.for
unweighted P4
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I A cycle graph Cn. Similar to a path, but endpoints are connected.
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Some named graphs

I A mesh or grid graph
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Geometric graphs

I in some applications, we create a graph from a collection of vectors xi 2 Rn

I We create an edge whenever kxi � xjk2 � d, where d is less than a critical distance

I left d = 0:3, right d = 0:4
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Nearest neighbor graphs

I we have an edge between i and j if i is among the k-nearest neighbors of j or vice versa.

I Here k is a parameter that we choose.

I When k = 1 the graph is called the nearest neighbor graph. Left k = 1, right k = 2
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Choosing a method

I the choice of method (and parameters) depends on the final application

I all methods share the same basic idea

I edges of the graph indicate that nodes are ‘similar’, with higher weight indicating a higher degree of
similarity.

I small kxi � xjk2 indicates that nodes i and j are similar
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Graph Connectivity and Paths
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I A path of length L: sequence of nodes i1; : : : ; iL+1 where fij ; ij+1g 2 E.

I Nodes i and j are pathwise connected if a path exists between them.

I A graph is connected if every pair of nodes is pathwise connected.

I Powers of unweighted adjacency matrix: (WL)ij is number of paths of length L between i; j.

I The i; j entry of the matrix
Z = I +W +W 2 + � � �+Wn�1

gives the number of paths of length at most n� 1 between nodes i and j.
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Connected components

I a graph partitions the nodes into groups of mutually pathwise connected nodes.

I that is, we have subsets of nodes G1; : : : ; GK � f1; : : : ; ng with

Gi \Gj = ; for i 6= j; G1 [ � � � [GK = f1; : : : ; ng:

I Within each group of nodes, every node is pathwise connected to every other one
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Incidence matrix (directed graphs)

I For an undirected graph, assign arbitrary directions to edges to form a network.

I The n�m incidence matrix A has entries:

Aij =

8><
>:

1 edge j points to node i
�1 edge j points from node i
0 otherwise
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Node potentials and Dirichlet energy

I Assign a scalar value xi to each node i: node potentials x 2 Rn.

I Dirichlet energy D(x) measures smoothness of x across the graph.

D(x) =
1

2

nX
i;j=1

Wij(xi � xj)
2

I Small D(x) means xi � xj for adjacent nodes (especially with large Wij).
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The Graph Laplacian Matrix

I The Dirichlet energy is a quadratic form

D(x) = xTLx

I L is the Laplacian matrix: L = D �W .

I D = diag(dw) is the diagonal matrix of weighted degrees.

I Entries: Lii = dw
i
, Lij = �Wij for i 6= j.

I L is symmetric and positive semi-definite (PSD).

I Not positive definite (PD), since L1 = 0 (hence D(1) = 0).
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Laplacian matrix

let’s establish L = D �W

D(x) = (1=2)

nX
i;j=1

Wij(xi � xj)
2

= (1=2)

nX
i;j=1

Wij(x
2
i � 2xixj + x2j )

= (1=2)

nX
i=1

 
nX
j=1

Wij

!
x2i �

nX
i;j=1

Wijxixj + (1=2)

nX
j=1

 
nX
i=1

Wij

!
x2j

= xTDx� xTWx:

we use that fact that the first and last sums are both equal to
Pn

i=1
dix

2
i .
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Laplacian from Incidence Matrix

I let w be the vector of edge weights.

I the Laplacian can also be defined using the incidence matrix A

L = Adiag(w)AT

I this definition is independent of the arbitrary edge orientations chosen for A.

I multiplication by AT gives a vector of potential differences

I when w = 1 then L is the Gram matrix of AT
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Nullspace of the Laplacian and connectivity

I If Lx = 0, then D(x) = 0, implying xi = xj for all adjacent nodes.

I By extension, xi = xj for all pathwise connected nodes.

I If the graph is connected:
N (L) = span(1)

I dimN (L) = 1. Smallest eigenvalue �1 = 0, with eigenvector 1.

I If the graph is disconnected with K components:

dimN (L) = K

I Number of zero eigenvalues of L equals number of connected components.
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Scalar spectral embedding problem

I Assign node potentials x 2 Rn (an embedding) to minimize Dirichlet energy.

I Smoothness: adjacent nodes should have similar values (small jxi � xj j).
I Constraints needed to prevent trivial or arbitrary solutions:

I Centering: 1Tx = 0 (mean of potentials is zero, due to shift invariance of D(x)).

I Scaling: kxk2
2
= n (RMS value of potentials is one, prevents x = 0).

I we would like to solve
minimize xTLx

subject to 1Tx = 0

kxk2 =
p
n
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Eigendecomposition of the Laplacian

I eigenvalues of L are 0 = �1 < �2 � : : : � �n.

I �1 = 0 has eigenvector 1.

I The second smallest eigenvalue �2 is the Fiedler eigenvalue (�F).

I Its associated eigenvector vF (or v2) is the Fiedler eigenvector.

I 1TvF = 0 and kvFk2 = 1.
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Scalar spectral embedding solution

I recall the optimization problem, where A is symmetric and �1 < �2

minimize xTAx

subject to vT1 x = 0

kxk2 = 1;

where v1 is an eigenvector associated with the smallest eigenvalue �1

I the normalized second smallest eigenvector v2 is a solution

I for scalar spectral embedding, the solution is

xse =
p
nvF

I xse is the spectral embedding for the weighted graph.

I The optimal value of D(x) is n�F. Small �F indicates a graph is ‘almost disconnected’.
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Example: scalar spectral embedding
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Applications: node ordering

I Node ordering problem: Assign integers 1; : : : ; n to nodes as new indices �.

I Goal: edges connect nodes with nearby indices, especially for high weights.

minimize �TL�

subject to � 2 Sn

I Exact solution is computationally hard (n! permutations).

I Approximate solution (spectral ordering): Sort entries of xse.

I Polishing: Local search (swapping adjacent indices) to improve Dirichlet energy.

1 2 3 4 5 6

1 23 45 6
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Applications: Permuting a correlation matrix

I given a correlation matrix C, create a graph, either connect based on a threshold, or use

Wij =
�
Cij + 1

2

�

I spectral ordering ensures that highly-correlated items are near each other

I application: LU or Cholesky solvers have reduced fill-in
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Applications: Graph bisection

I Node bisection problem: Partition nodes into two groups A;B.

I Encode partition: xi = �1 if i 2 A, xi = 1 if i 2 B.

I Balanced bisection: jAj = jBj = n=2 =) 1Tx = 0.

I Cut weight: sum of weights of edges crossing the cut.

minimize xTLx

subject to xi 2 f�1; 1g; for i = 1; : : : ; n

1Tx = 0

I Exact solution is NP-hard.

I Approximate solution (spectral bisection): Take xse, assign nodes with smallest n=2 values to A, rest
to B.
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Vector Graph Embedding

I Assign a k-dimensional vector xi 2 Rk to each node i.

I Form an n� k matrix X, where rows are xT
i .

I Objective is to minimize the sum of squared differences between adjacent node vectors:

D(X) =
1

2

nX
i;j=1

Wijkxi � xjk22

I This can be expressed in terms of the Laplacian: D(X) = trace(XTLX).

I Constraints:

I Centering: XT1 = 0 (mean of each component is zero).

I Standardization: 1

n
XTX = I (components are orthogonal and scaled).
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Vector spectral embedding solution

I The columns of the optimal X are proportional to the k eigenvectors of L corresponding to the k smallest
non-zero eigenvalues (v2; : : : ; vk+1). 2

64
xT
1

...
xT
n

3
75 / [v2 : : : vk+1]

I Graph drawing: k = 2 allows nodes to be plotted in a 2D plane based on their embedding vectors.
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