

## Graph Embeddings and Spectral Methods

- ▶ weighted graphs: terminology and representations
- ▶ graph Laplacian and Dirichlet energy
- ▶ spectral graph embedding (scalar and vector)
- ▶ node ordering and graph partitioning

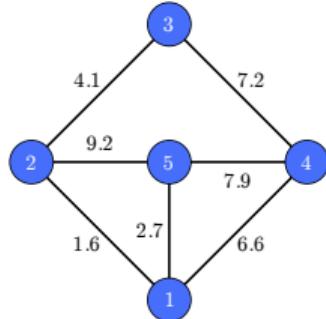
## Graphs: Nodes and Edges

- ▶ A graph  $G = (V, E)$  consists of:
  - ▶ a set of  $n$  *nodes* (or *vertices*)  $V = \{1, \dots, n\}$
  - ▶ a set of  $m$  *edges* (or *links*)  $E = \{\{i, j\} \mid \text{nodes } i, j \text{ are connected}\}$
- ▶ Nodes  $i$  and  $j$  are *adjacent* (neighbors) if  $\{i, j\} \in E$ .
  - ▶ Neighbor set of  $i$ :  $N(i) = \{j \mid \{i, j\} \in E\}$
  - ▶ *Degree* of node  $i$ :  $d_i = |N(i)|$
- ▶ *Undirected graph*:  $\{i, j\}$  is the same as  $\{j, i\}$ .

## Weighted Graphs and Adjacency Matrix

- ▶ In a *weighted graph*, each edge  $\{i, j\} \in E$  has a positive *weight*  $W_{ij} > 0$ .
  - ▶  $W_{ij} = W_{ji}$  (symmetric).
  - ▶  $W_{ij} = 0$  if  $\{i, j\} \notin E$ .
  - ▶ Diagonal entries  $W_{ii} = 0$ .
- ▶ The *weighted adjacency matrix*  $W \in \mathbb{R}^{n \times n}$  completely specifies the graph.
  - ▶  $2m$  non-zero entries (for symmetric  $W$ ).
- ▶ *Weighted degree* of node  $i$ :  $d_i^w = \sum_{\{i,j\} \in E} W_{ij}$ .
  - ▶ In matrix notation:  $d^w = W\mathbf{1}$ .

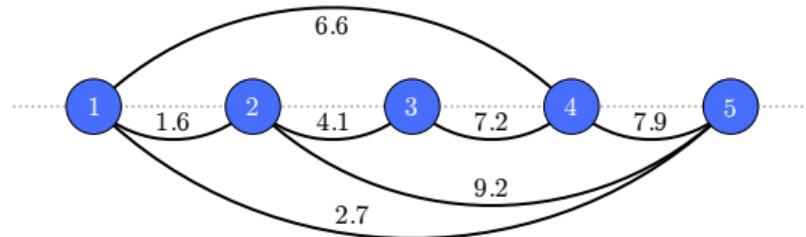
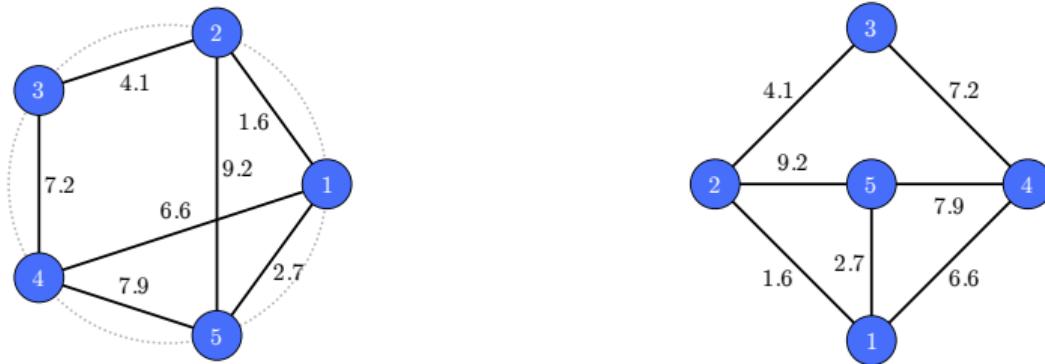
## Example weighted graph



$$W = \begin{bmatrix} 0 & 1.6 & 0 & 6.6 & 2.7 \\ 1.6 & 0 & 4.1 & 0 & 9.2 \\ 0 & 4.1 & 0 & 7.2 & 0 \\ 6.6 & 0 & 7.2 & 0 & 7.9 \\ 2.7 & 9.2 & 0 & 7.9 & 0 \end{bmatrix}$$

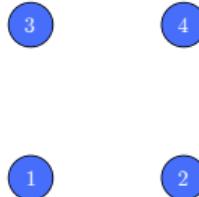
- ▶  $n = 5$  nodes,  $m = 7$  edges
- ▶ Weighted degrees:  $d^w = (10.9, 14.9, 11.3, 21.7, 19.8)$

## Example graph drawing styles

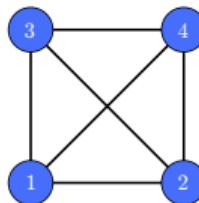


## Some named graphs

- An *empty* graph has no edges, *i.e.*,  $E = \emptyset$ .



- A *full* or *complete* graph has an edge between every pair of nodes.



## Some named graphs

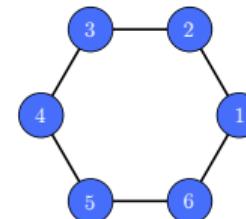
- A *chain* graph  $P_n$  is a graph with  $n$  nodes arranged in a line. Adjacency matrix is tridiagonal, e.g. for unweighted  $P_4$

$$W = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$



- A *cycle* graph  $C_n$ . Similar to a path, but endpoints are connected.

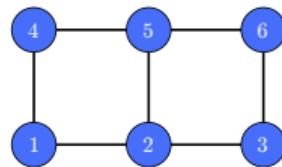
$$W = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$



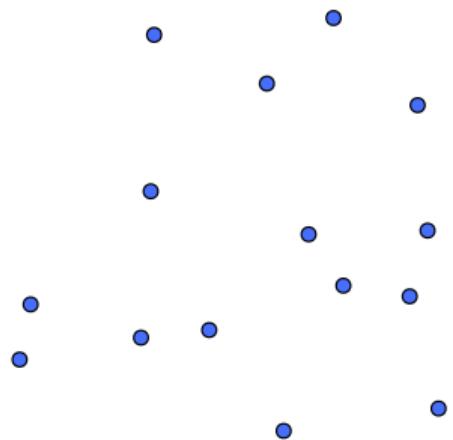
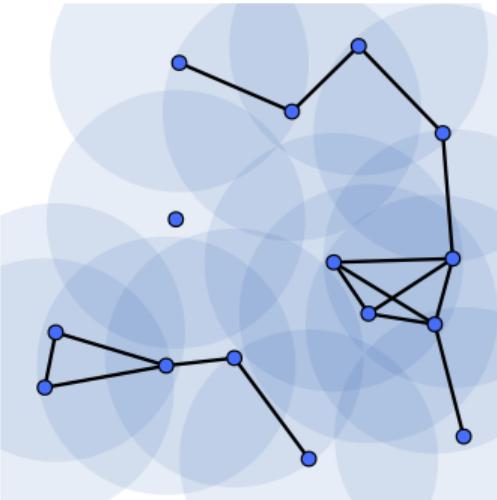
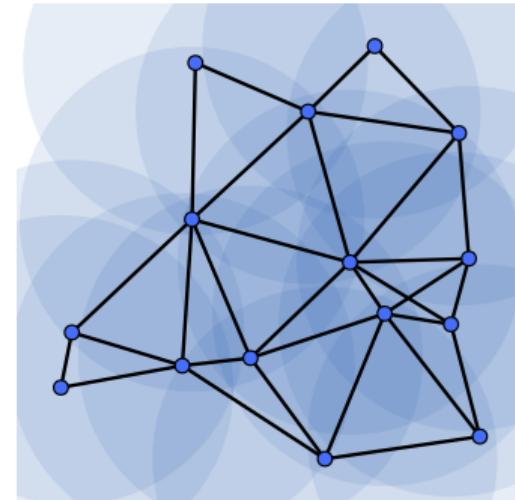
## Some named graphs

- ▶ A *mesh* or *grid* graph

$$W = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

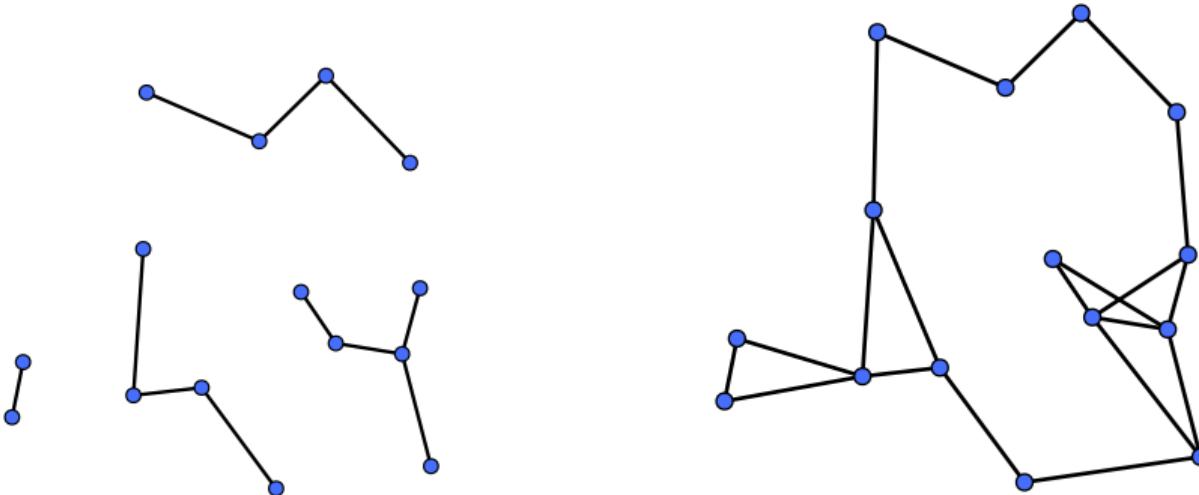


## Geometric graphs



- ▶ in some applications, we create a graph from a collection of vectors  $x_i \in \mathbb{R}^n$
- ▶ We create an edge whenever  $\|x_i - x_j\|_2 \leq d$ , where  $d$  is less than a critical distance
- ▶ left  $d = 0.3$ , right  $d = 0.4$

## Nearest neighbor graphs

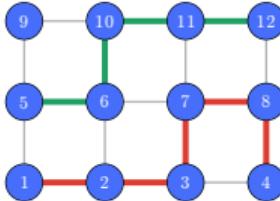


- ▶ we have an edge between  $i$  and  $j$  if  $i$  is among the  $k$ -nearest neighbors of  $j$  or vice versa.
- ▶ Here  $k$  is a parameter that we choose.
- ▶ When  $k = 1$  the graph is called the nearest neighbor graph. Left  $k = 1$ , right  $k = 2$

## Choosing a method

- ▶ the choice of method (and parameters) depends on the final application
- ▶ all methods share the same basic idea
- ▶ edges of the graph indicate that nodes are 'similar', with higher weight indicating a higher degree of similarity.
- ▶ small  $\|x_i - x_j\|_2$  indicates that nodes  $i$  and  $j$  are similar

## Graph Connectivity and Paths



- ▶ A *path* of length  $L$ : sequence of nodes  $i_1, \dots, i_{L+1}$  where  $\{i_j, i_{j+1}\} \in E$ .
- ▶ Nodes  $i$  and  $j$  are *pathwise connected* if a path exists between them.
- ▶ A graph is *connected* if every pair of nodes is pathwise connected.
- ▶ Powers of unweighted adjacency matrix:  $(W^L)_{ij}$  is number of paths of length  $L$  between  $i, j$ .
- ▶ The  $i, j$  entry of the matrix

$$Z = I + W + W^2 + \dots + W^{n-1}$$

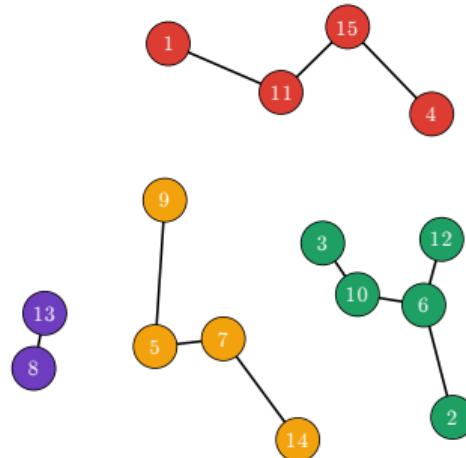
gives the number of paths of length at most  $n - 1$  between nodes  $i$  and  $j$ .

## Connected components

- ▶ a graph partitions the nodes into groups of mutually pathwise connected nodes.
- ▶ that is, we have subsets of nodes  $G_1, \dots, G_K \subseteq \{1, \dots, n\}$  with

$$G_i \cap G_j = \emptyset \text{ for } i \neq j, \quad G_1 \cup \dots \cup G_K = \{1, \dots, n\}.$$

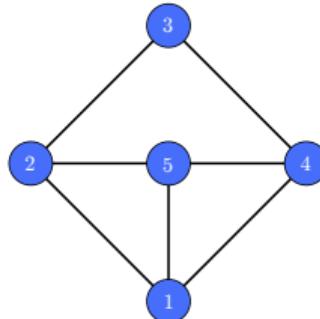
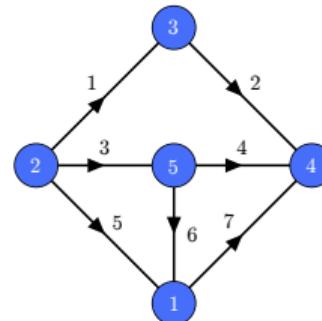
- ▶ Within each group of nodes, every node is pathwise connected to every other one



## Incidence matrix (directed graphs)

- ▶ For an undirected graph, assign arbitrary directions to edges to form a *network*.
- ▶ The  $n \times m$  *incidence matrix*  $A$  has entries:

$$A_{ij} = \begin{cases} 1 & \text{edge } j \text{ points to node } i \\ -1 & \text{edge } j \text{ points from node } i \\ 0 & \text{otherwise} \end{cases}$$

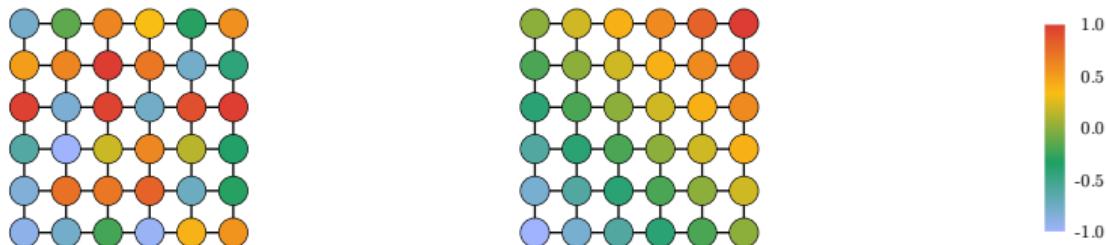


## Node potentials and Dirichlet energy

- ▶ Assign a scalar value  $x_i$  to each node  $i$ : *node potentials*  $x \in \mathbb{R}^n$ .
- ▶ *Dirichlet energy*  $D(x)$  measures smoothness of  $x$  across the graph.

$$D(x) = \frac{1}{2} \sum_{i,j=1}^n W_{ij}(x_i - x_j)^2$$

- ▶ Small  $D(x)$  means  $x_i \approx x_j$  for adjacent nodes (especially with large  $W_{ij}$ ).



## The Graph Laplacian Matrix

- ▶ The Dirichlet energy is a quadratic form

$$D(x) = x^\top L x$$

- ▶  $L$  is the *Laplacian matrix*:  $L = D - W$ .
  - ▶  $D = \text{diag}(d^w)$  is the diagonal matrix of weighted degrees.
  - ▶ Entries:  $L_{ii} = d_i^w$ ,  $L_{ij} = -W_{ij}$  for  $i \neq j$ .
- ▶  $L$  is symmetric and positive semi-definite (PSD).
  - ▶ Not positive definite (PD), since  $L\mathbf{1} = 0$  (hence  $D(\mathbf{1}) = 0$ ).

## Laplacian matrix

let's establish  $L = D - W$

$$\begin{aligned}\mathcal{D}(x) &= (1/2) \sum_{i,j=1}^n W_{ij} (x_i - x_j)^2 \\ &= (1/2) \sum_{i,j=1}^n W_{ij} (x_i^2 - 2x_i x_j + x_j^2) \\ &= (1/2) \sum_{i=1}^n \left( \sum_{j=1}^n W_{ij} \right) x_i^2 - \sum_{i,j=1}^n W_{ij} x_i x_j + (1/2) \sum_{j=1}^n \left( \sum_{i=1}^n W_{ij} \right) x_j^2 \\ &= x^T D x - x^T W x.\end{aligned}$$

we use that fact that the first and last sums are both equal to  $\sum_{i=1}^n d_i x_i^2$ .

## Laplacian from Incidence Matrix

- ▶ let  $w$  be the vector of edge weights.
- ▶ the Laplacian can also be defined using the incidence matrix  $A$

$$L = A \text{diag}(w) A^T$$

- ▶ this definition is independent of the arbitrary edge orientations chosen for  $A$ .
- ▶ multiplication by  $A^T$  gives a vector of potential differences
- ▶ when  $w = \mathbf{1}$  then  $L$  is the *Gram matrix* of  $A^T$

## Nullspace of the Laplacian and connectivity

- ▶ If  $Lx = 0$ , then  $D(x) = 0$ , implying  $x_i = x_j$  for all adjacent nodes.
- ▶ By extension,  $x_i = x_j$  for all pathwise connected nodes.
- ▶ If the graph is connected:

$$\mathcal{N}(L) = \text{span}(\mathbf{1})$$

- ▶  $\dim \mathcal{N}(L) = 1$ . Smallest eigenvalue  $\lambda_1 = 0$ , with eigenvector  $\mathbf{1}$ .
- ▶ If the graph is disconnected with  $K$  components:

$$\dim \mathcal{N}(L) = K$$

- ▶ Number of zero eigenvalues of  $L$  equals number of connected components.

## Scalar spectral embedding problem

- ▶ Assign node potentials  $x \in \mathbb{R}^n$  (an *embedding*) to minimize Dirichlet energy.
- ▶ *Smoothness*: adjacent nodes should have similar values (small  $|x_i - x_j|$ ).
- ▶ Constraints needed to prevent trivial or arbitrary solutions:
  - ▶ *Centering*:  $\mathbf{1}^T x = 0$  (mean of potentials is zero, due to shift invariance of  $D(x)$ ).
  - ▶ *Scaling*:  $\|x\|_2^2 = n$  (RMS value of potentials is one, prevents  $x = 0$ ).
- ▶ we would like to solve

$$\begin{array}{ll}\text{minimize} & x^T L x \\ \text{subject to} & \mathbf{1}^T x = 0 \\ & \|x\|_2 = \sqrt{n}\end{array}$$

## Eigendecomposition of the Laplacian

- ▶ eigenvalues of  $L$  are  $0 = \lambda_1 < \lambda_2 \leq \dots \leq \lambda_n$ .
- ▶  $\lambda_1 = 0$  has eigenvector  $\mathbf{1}$ .
- ▶ The second smallest eigenvalue  $\lambda_2$  is the *Fiedler eigenvalue* ( $\lambda^F$ ).
- ▶ Its associated eigenvector  $v^F$  (or  $v_2$ ) is the *Fiedler eigenvector*.
- ▶  $\mathbf{1}^T v^F = 0$  and  $\|v^F\|_2 = 1$ .

## Scalar spectral embedding solution

- ▶ recall the optimization problem, where  $A$  is symmetric and  $\lambda_1 < \lambda_2$

$$\begin{aligned} & \text{minimize} && x^T A x \\ & \text{subject to} && v_1^T x = 0 \\ & && \|x\|_2 = 1, \end{aligned}$$

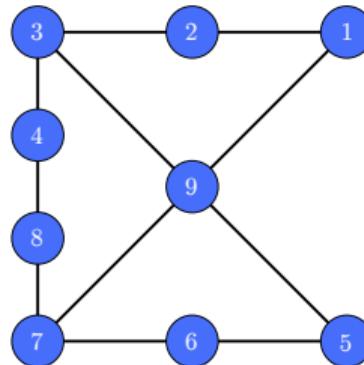
where  $v_1$  is an eigenvector associated with the smallest eigenvalue  $\lambda_1$

- ▶ the normalized second smallest eigenvector  $v_2$  is a solution
- ▶ for scalar spectral embedding, the solution is

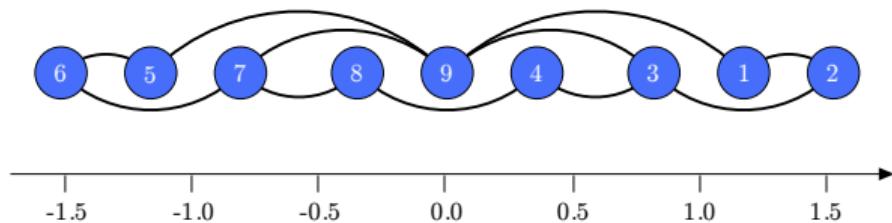
$$x^{\text{se}} = \sqrt{n} v^F$$

- ▶  $x^{\text{se}}$  is the *spectral embedding* for the weighted graph.
- ▶ The optimal value of  $D(x)$  is  $n\lambda^F$ . Small  $\lambda^F$  indicates a graph is 'almost disconnected'.

## Example: scalar spectral embedding



The scalar spectral embedding is:

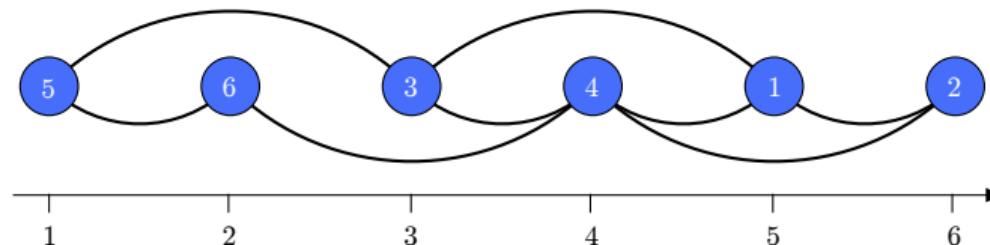


## Applications: node ordering

- ▶ *Node ordering problem*: Assign integers  $1, \dots, n$  to nodes as new indices  $\sigma$ .
- ▶ Goal: edges connect nodes with nearby indices, especially for high weights.

$$\begin{aligned} & \text{minimize} && \sigma^T L \sigma \\ & \text{subject to} && \sigma \in S_n \end{aligned}$$

- ▶ Exact solution is computationally hard ( $n!$  permutations).
- ▶ *Approximate solution (spectral ordering)*: Sort entries of  $x^{\text{se}}$ .
- ▶ *Polishing*: Local search (swapping adjacent indices) to improve Dirichlet energy.

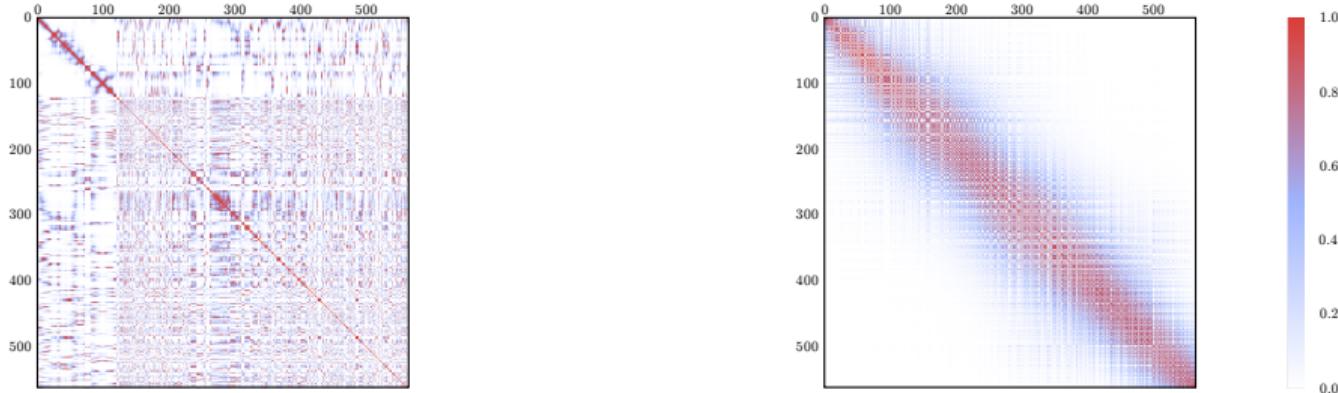


## Applications: Permuting a correlation matrix

- ▶ given a correlation matrix  $C$ , create a graph, either connect based on a threshold, or use

$$W_{ij} = \left( \frac{C_{ij} + 1}{2} \right)^\gamma$$

- ▶ spectral ordering ensures that highly-correlated items are near each other
- ▶ application: LU or Cholesky solvers have reduced fill-in



## Applications: Graph bisection

- ▶ *Node bisection problem*: Partition nodes into two groups  $A, B$ .
- ▶ Encode partition:  $x_i = -1$  if  $i \in A$ ,  $x_i = 1$  if  $i \in B$ .
- ▶ *Balanced bisection*:  $|A| = |B| = n/2 \implies \mathbf{1}^T x = 0$ .
- ▶ *Cut weight*: sum of weights of edges crossing the cut.

$$\begin{aligned} & \text{minimize} && x^T L x \\ & \text{subject to} && x_i \in \{-1, 1\}, \text{ for } i = 1, \dots, n \\ & && \mathbf{1}^T x = 0 \end{aligned}$$

- ▶ Exact solution is NP-hard.
- ▶ *Approximate solution (spectral bisection)*: Take  $x^{\text{se}}$ , assign nodes with smallest  $n/2$  values to  $A$ , rest to  $B$ .

## Vector Graph Embedding

- ▶ Assign a  $k$ -dimensional vector  $x_i \in \mathbb{R}^k$  to each node  $i$ .
- ▶ Form an  $n \times k$  matrix  $X$ , where rows are  $x_i^\top$ .
- ▶ Objective is to minimize the sum of squared differences between adjacent node vectors:

$$D(X) = \frac{1}{2} \sum_{i,j=1}^n W_{ij} \|x_i - x_j\|_2^2$$

- ▶ This can be expressed in terms of the Laplacian:  $D(X) = \text{trace}(X^\top L X)$ .
- ▶ Constraints:
  - ▶ *Centering*:  $X^\top \mathbf{1} = 0$  (mean of each component is zero).
  - ▶ *Standardization*:  $\frac{1}{n} X^\top X = I$  (components are orthogonal and scaled).

## Vector spectral embedding solution

- ▶ The columns of the optimal  $X$  are proportional to the  $k$  eigenvectors of  $L$  corresponding to the  $k$  smallest non-zero eigenvalues ( $v_2, \dots, v_{k+1}$ ).

$$\begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix} \propto [v_2 \ \dots \ v_{k+1}]$$

- ▶ *Graph drawing*:  $k = 2$  allows nodes to be plotted in a 2D plane based on their embedding vectors.

