Interpreting Linear Equations

Stephen Boyd and Sanjay Lall

EE263
Stanford University
Broad categories of applications

linear model or function $y = Ax$

some broad categories of applications:

- estimation or inversion
- control or design
- mapping or transformation

(this list is not exclusive; can have combinations . . .)
Estimation or inversion

\[y = Ax \]

- \(y_i \) is \(i \)th measurement or sensor reading (which we know)
- \(x_j \) is \(j \)th parameter to be estimated or determined
- \(a_{ij} \) is sensitivity of \(i \)th sensor to \(j \)th parameter

Sample problems:

- Find \(x \), given \(y \)
- Find all \(x \)'s that result in \(y \) (\(i.e. \), all \(x \)'s consistent with measurements)
- If there is no \(x \) such that \(y = Ax \), find \(x \) s.t. \(y \approx Ax \) (\(i.e. \), if the sensor readings are inconsistent, find \(x \) which is almost consistent)
Control or design

\[y = Ax \]

- \(x \) is vector of design parameters or inputs (which we can choose)
- \(y \) is vector of results, or outcomes
- \(A \) describes how input choices affect results

Sample problems:

- find \(x \) so that \(y = y_{des} \)
- find all \(x \)'s that result in \(y = y_{des} \) (i.e., find all designs that meet specifications)
- among \(x \)'s that satisfy \(y = y_{des} \), find a small one (i.e., find a small or efficient \(x \) that meets specifications)
Mapping or transformation

- x is mapped or transformed to y by linear function $y = Ax$

Sample problems:

- Determine if there is an x that maps to a given y
- (if possible) find an x that maps to y
- Find all x's that map to a given y
- If there is only one x that maps to y, find it (i.e., decode or undo the mapping)
Matrix multiplication as mixture of columns

write $A \in \mathbb{R}^{m \times n}$ in terms of its columns

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

where $a_j \in \mathbb{R}^m$. Then then $y = Ax$ means

$$y = x_1a_1 + x_2a_2 + \cdots + x_na_n$$

(x_j’s are scalars, a_j’s are m-vectors)

- y is a (linear) combination or mixture of the columns of A
- coefficients of x give coefficients of mixture
- each column of A represents an actuator
Geometric interpretation of control

example: \(A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}, \quad x = \begin{bmatrix} 1 \\ -0.5 \end{bmatrix}, \quad y = \begin{bmatrix} 1.5 \\ 1.5 \end{bmatrix} \)

\[Ax = a_1 + (-0.5)a_2 = \begin{bmatrix} 1.5 \\ 1.5 \end{bmatrix} \]

another example:

\[a_j = Ae_j \]

where \(e_j \) is the \(j \)th unit vector:

\[e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \ldots, \quad e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ n \end{bmatrix} \]

\(j \)th column of \(A \) gives response to unit \(j \)th input
Matrix multiplication as inner product with rows

write \(A \) in terms of its rows:

\[
A = \begin{bmatrix}
\tilde{a}_1^T \\
\tilde{a}_2^T \\
\vdots \\
\tilde{a}_m^T
\end{bmatrix}
\]

where \(\tilde{a}_i \in \mathbb{R}^n \)

then \(y = Ax \) can be written as

\[
y = \begin{bmatrix}
\tilde{a}_1^T x \\
\tilde{a}_2^T x \\
\vdots \\
\tilde{a}_m^T x
\end{bmatrix}
\]

\(y_i = \tilde{a}_i^T x \), so that \(y_i \) is inner product of \(i \)th row of \(A \) with \(x \)

each row of \(A \) represents a sensor
Geometric interpretation of estimation

\[a^T_i x = \text{constant} \]

is a (hyper-)plane in \(\mathbb{R}^n \) normal to \(a_i \).

If \(Ax = y \) then \(x \) is on intersection of hyperplanes \(a^T_i x = y_i \)

\[
A = \begin{bmatrix}
2 & 1 \\
-1 & 1 \\
\end{bmatrix}
\]

\[
x = \begin{bmatrix}
1 \\
2 \\
\end{bmatrix}
\]

\[
y = \begin{bmatrix}
4 \\
1 \\
\end{bmatrix}
\]
Matrix multiplication as composition

for $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, $C = AB \in \mathbb{R}^{m \times p}$ where

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

composition interpretation

$y = Cz$ represents composition of $y = Ax$ and $x = Bz$

(note that B is on left in block diagram)
Column and row interpretations

can write product $C = AB$ as

$$C = \begin{bmatrix} c_1 & \cdots & c_p \end{bmatrix} = AB = \begin{bmatrix} Ab_1 & \cdots & Ab_p \end{bmatrix}$$

i.e., ith column of C is A acting on ith column of B

similarly we can write

$$C = \begin{bmatrix} \tilde{c}_1^T \\ \vdots \\ \tilde{c}_m^T \end{bmatrix} = AB = \begin{bmatrix} \tilde{a}_1^T B \\ \vdots \\ \tilde{a}_m^T B \end{bmatrix}$$

i.e., ith row of C is ith row of A acting (on left) on B
Inner product interpretation

\[c_{ij} = \bar{a}_i^T b_j = \langle \bar{a}_i, b_j \rangle \]

i.e., entries of \(C \) are inner products of rows of \(A \) and columns of \(B \)

- \(c_{ij} = 0 \) means \(i \)th row of \(A \) is orthogonal to \(j \)th column of \(B \)

- **Gram matrix** of vectors \(f_1, \ldots, f_n \) defined as \(G_{ij} = f_i^T f_j \)

 (gives inner product of each vector with the others)

- \(G = \begin{bmatrix} f_1 & \cdots & f_n \end{bmatrix}^T \begin{bmatrix} f_1 & \cdots & f_n \end{bmatrix} \)