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Random variables

I we have a real-valued random variable x with probability density function (pdf) so that

Prob(x 2 [a; b]) =

Z b

a

p(x) dx

I the mean or expected value of x is E(x) =
Z 1

�1

xp(x) dx

I the variance of x is var(x) = E
�
(x� �)2

�
=

Z 1

�1

(x� �)2p(x) dx

I mean is linear, so for a; b 2 R
I E(ax+ b) = aE(x) + b

I var(ax+ b) = a2 var(x)
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Gaussian random variables

I x is Gaussian if it has probability density function (pdf) given by

p(x) =
1

�
p
2�

e
�

(x��)2

2�2

I write this as x � N (�; �2)

I the mean or expected value of x is E(x) = �

I the variance of x is E
�
(x� �)2

�
= �2
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Gaussian random variables

pdf for x � N (0; 1) is
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I p is symmetric about the mean

I decays very fast; but p(x) > 0 for all x
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Computing probabilities for Gaussian random variables

I the error function is

erf(x) =
2p
�

Z x

0

e�t
2

dt

I the Gaussian cumulative distribution function (CDF) is

FN (a) = Prob(x � a) =
1

2
+

1

2
erf
�
a� �

�
p
2

�

I plot shows � = 0 and � = 1,
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Computing probabilities for Gaussian random variables

I for x � N (0; �2) we have for a � 0

Prob(x 2 [�a; a]) = erf
�

a

�
p
2

�

I some particular values:

I Prob(x 2 [��; �]) � 0:68

I Prob(x 2 [�2�; 2�]) � 0:9545

I Prob(x 2 [�3�; 3�]) � 0:9973
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Continuous random vectors

I suppose Rn-valued random vector x has probability density function px : Rn ! R.

I the mean or expected value of x is

E(x) =
Z
Rn

xpx(x) dx
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Covariance

I the covariance of x is

cov(x) = E
�
(x� �)(x� �)T

�
=

Z
Rn

(x� �)(x� �)T px(x) dx

I We’ll often denote the covariance by � = cov(x)

I � is symmetric and positive semidefinite

I �ii is the covariance of the i’th component xi

�ii = cov(xi)
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Affine transformations

I suppose x is an Rn-valued random vector

I let y be an affine function of x, given by y = Ax+ b

I the mean of y is the same affine function of the mean of x

E(y) = AE(x) + b

I the covariance of y is a linear function of the covariance of x

cov(y) = A cov(x)AT

9



Affine transformations of random vectors

I for the mean, we have

E y = E(Ax+ b)

=

Z
Rn

(Ax+ b)p(x) dx

= b+ A

Z
Rn

xp(x) dx

= b+ AEx

I and for the covariance

cov(y) = E
�
(y � E y)(y � E y)T

�
= E

�
A(x� Ex)(x� Ex)TAT

�
= AE

�
(x� Ex)(x� Ex)T

�
AT

= A cov(x)AT
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Mean-square deviation

I Suppose x is an Rn-valued random variable, with mean �.

I The mean square deviation from the mean is given by

E
�
kx� �k2

�
= trace cov(x)

I because

E
�
kx� �k2

�
= E

�
(x� �)T (x� �)

�

= E trace
�
(x� �)T (x� �)

�

= E trace
�
(x� �)(x� �)T

�
since trace(AB) = trace(BA)

= trace E
�
(x� �)(x� �)T

�
since EAx = AEx
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The mean-variance decomposition

I the mean square of a random variable x is

E
�
kxk2

�
= trace

�
cov(x)

�
+ kExk2

I this holds because

E
�
kxk2

�
= E

�
kx� �+ �k2

�
= E

�
kx� �k2 + 2�T (x� �) + k�k2

�
= E

�
kx� �k2

�
+ 2�T E(x� �) + k�k2

I called the mean-variance decomposition
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Correlation coefficient

I let � = cov(x). The correlation coefficient of xi and xj is

�ij =
�ijp
�ii�jj

I Since � � 0, we have j�ij j � 1

I If �ij = 0 then xi and xj are called uncorrelated.
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Correlation and covariance

I the correlation matrix of random vector x is

corr(x) = E(xxT )

I not to be confused with the correlation coefficient!

I If Ex = 0 then corr(x) = cov(x)

I The mean square of x is E
�
kxk2

�
= trace corr(x)

I The correlation-covariance decomposition is

corr(x) = cov(x) + (Ex)(ExT )

I same approach as the mean-variance formula
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Gaussian random vectors

I the Rn-valued random variable x is called Gaussian if it has pdf

px(x) =
1

(2�)
n

2 (det�)
1
2

exp

�
�1

2
(x� �)T��1(x� �)

�

I write this as x � N (�;�), here � = �T and � > 0
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Gaussian random vectors

I suppose x � N (�;�). Then the mean of x is

Ex = �

I and the covariance of x is
cov(x) = �
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Ellipsoids

I the Gaussian pdf is constant on the surface of the ellipsoids

S� =
n
x 2 Rn

�� (x� �)T��1(x� �) � �
o

I center is at �, semiaxis lengths are
p
��i(�).

I example has

� =

�
1

3

�

� =

�
2 1

1 1

�

contours at p(x) = 0:01; 0:02; : : :
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Gamma function

I the gamma function is

�(x) =

Z 1

0

tx�1e�t dt for x > 0

I for x > 0

�(x+ 1) = x�(x)

I �(1) = 1, so for integer x > 1

�(x) = (x� 1)!
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The �2 distribution

I the �2
n probability density function is

p�2
n
(z) =

1

2
n

2 �(n=2)
z
n

2
�1e�

z

2

I A family of pdfs, one for each n > 0

I If z � �2
n, then E z = n
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Gaussian random vectors and confidence ellipsoids

I supposex is Gaussian, i.e., x � N (�;�), where � 2 Rn and � 2 Rn�n. Define the random variable

z = (x� �)T��1(x� �)

which is a measure of the distance of x from �

I z has a �2
n distribution

I Hence prob. that x lies in the ellipsoid S� =
�
x 2 Rn

�� (x� �)T��1(x� �) � �
	

Prob(x 2 S�) = F�2
n
(�)

I for example F�2
n
(�) �

8<
:

1
2

if � = n

0:9 if � = n+ 2
p
n 90% confidence ellipsoid

20



Confidence ellipsoids

The plot shows the confidence ellipsoids and 200 sample points.
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Marginal probability density functions

I suppose x is an RV with pdf px : Rn ! R, and x =

�
x1
x2

�
, where x1 2 Rr.

I define the marginal pdf of x1 to be the function px1 such that

Prob(x1 2W ) =

Z
W

px1(z) dz for all W � Rr

I we also know that

Prob(x1 2W ) =

Z
W

Z
x22Rn�r

px(x1; x2) dx2 dx1

I since these are equal, we have

px1(x1) =

Z
x22Rn�r

px(x1; x2) dx2
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The marginal pdf of a Gaussian

I suppose x � N (�;�), and

x =

�
x1
x2

�
� =

�
�11 �12

�21 �22

�
� =

�
�1

�2

�

I let’s look at the component x1

I Since x1 =
�
I 0

�
x, we have the mean

Ex1 =
�
I 0

�
� = �1

and also the covariance

cov(x1) =
�
I 0

�
�

�
I

0

�
= �11

I In fact, the random variable x1 is Gaussian; this is not obvious
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Proof: the marginal pdf of a Gaussian

I assume for convenience that Ex = 0. The marginal pdf of x1 is

px1(x1) =

Z
x2

c1 exp

�
�1

2

�
x1
x2

�T
��1

�
x1
x2

��
dx2

I we have, by the completion of squares formula
�
�11 �12

�21 �22

��1
=

�
I ���111 �12

0 I

��
��111 0

0 (�22 � �21�
�1
11 �12)

�1

��
I 0

��21�
�1
11 I

�

I and so, setting S = �22 � �21�
�1
11 �12

�
x1
x2

�T
��1

�
x1
x2

�
= xT1 �

�1
11 x1 + (x2 � �21�

�1
11 x1)

TS�1(x2 � �21�
�1
11 x1)
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Proof: the marginal pdf of a Gaussian

I hence we have

px1(x1) = c1 exp

�
�1

2
xT1 �

�1
11 x1

�Z
x2

exp
�
�1

2
(x2 � �21�

�1
11 x1)

TS�1(x2 � �21�
�1
11 x1)

�
dx2

= c2 exp

�
�1

2
xT1 �

�1
11 x1

�

I now c2 is determined, because
Z

px1(z) dz = 1, so we don’t need to calculate it explicitly.

I therefore, if x � N (0;�) the marginal pdf of x1 is Gaussian, and

x1 � N (0;�11)
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Example: marginal pdf for Gaussians

I Suppose � =

�
2 0:8

0:8 1

�
and x � N (0;�). A simulation of 1000 points is below

I all blue and orange points (908) are within 90% confidence ellipsoid for x

I all blue and red points (899) are within 90% confidence interval for x1
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Degenerate Gaussian random vectors

I it’s convenient to allow � singular, but still � = �T and � � 0

this means that in some directions, x is not random at all

I obviously density formula does not hold; instead write

� =
�
Q1 Q2

� � �1 0

0 0

� �
Q1 Q2

�T

where Q =
�
Q1 Q2

�
is orthogonal, and �1 > 0

columns of Q1 are orthonormal basis for range(�)
columns of Q2 are orthonormal basis for null(�)

I let

�
z

w

�
= QTx; then

I z � N (QT
1 �;�1) is non-degenerate Gaussian

I w = QT
2 � is not random
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Changes of variables for random vectors

I suppose f : Rn ! R is continuous, and h : Rn ! R
n satisfies

I h is one-to-one and onto; i.e., h is invertible

I Both h and h�1 are differentiable, with continuous derivative

I the derivative of h at x is Dh(x), the Jacobian matrix

�
Dh(x)

�
ij
=

@hi
@xj

(x)

I then for any A � Rn Z
h(A)

f(x) dx =

Z
A

f
�
h(y)

� ��detDh(y)
�� dy
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Changes of variables for random vectors

I suppose x is an Rn-valued random vector, and y = g(x), where g is invertible, and g and g�1 are
continuously differentiable. Then

py(y) =
px
�
g�1(y)

�
��det(Dg)

�
g�1(y)

���
I this holds because

Prob(y 2 A) =

Z
A

py(y) dy

=

Z
g�1(A)

px(x) dx

=

Z
A

px
�
g�1(y)

�
��det(Dg)

�
g�1(y)

��� dy

where D(g�1)(y) =
�
(Dg)

�
g�1(y)

���1
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Example: linear transformations

I consider y = Ax+ b, where A 2 Rn�n is invertible. Then

py(y) =
px
�
A�1(y � b)

�
jdetAj
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Linear transformations of Gaussians

I fundamental result: a linear function of a Gaussian random vector is a Gaussian random vector

I suppose x � N (�x;�x), A 2 Rm�n and b 2 Rm. Consider the linear function of x

y = Ax+ b

I we already know how means and covariances transform; we have

E(y) = AEx+ b cov(y) = A cov(x)AT

I additional fact is that y is Gaussian
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Linear transformations of Gaussians

I to show this, first suppose A 2 Rn�n is invertible. Let �y = A�x + b and �y = A�xA
T .

I we know

px(x) =
1

(2�)
n

2 (det�x)
1
2

exp

�
�1

2
(x� �)T��1x (x� �)

�

I so

py(y) =
px
�
A�1(y � b)

�
jdetAj

=
1

jdetAj(2�)n2 (det�x)
1
2

exp

�
�1

2
(y � b� A�x)

T (A�1)T��1x A�1(y � b� A�x)

�

=
1

(2�)
n

2 (det�y)
1
2

exp

�
�1

2
(y � �y)

T��1y (y � �y)

�

32



Non-invertible linear transformations of Gaussians

I suppose A 2 Rm�n, and y = Ax where x � N (0;�x). The SVD of A is

A = U�V T =
�
U1 U2

� � �1 0

0 0

��
V T
1

V T
2

�

I so we decompose the map into

y = Uw

�
w1

w2

�
= �z

�
z1
z2

�
= V Tx
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Non-invertible linear transformations of Gaussians

I since V is invertible, we know z � N (0;�z), where

�z =

�
V T
1

V T
2

�
�x

�
V1 V2

�

I we know z is Gaussian, hence the marginal z1 is Gaussian

z1 � N (0; V T
1 �xV1)

I also w2 = 0, and since �1 is invertible, w1 is Gaussian

w1 � N (0;�1V
T
1 �xV1�1)

I since w = UT y, we have y is a degenerate Gaussian random vector where

I w1 = UT
1 y are the components of y that are Gaussian

I w2 = 0 are the components of y that are not random

34



Full-rank case

I when range(A) = R
m, i.e., A is full row rank, we have

y � N (0; A�xA
T )

I because the SVD of A is

A = U
�
�1 0

� � V T
1

V T
2

�

I then y = Uw1, and since U is invertible, we have

y � N (0; U�1V
T
1 �xV1�1U

T )
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Example: simulating Gaussian random vectors

I in many languages its easy to generate x � N (0; I)

I to generate y � N (�;�), we can use
y = �

1
2 x+ �

I extremely useful for simulation
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f

Example: Gaussian random force on mass

I x is the sequence of applied forces, so f(t) = xj for t in the interval [j � 1; j].

I y1, y2 are final position and velocity

I y = Ax where A =

�
9:5 8:5 7:5 6:5 5:5 4:5 3:5 2:5 1:5 0:5

1 1 1 1 1 1 1 1 1 1

�

I suppose the forces are Gaussian, and the vector x � N (0;�), where

� =

2
66666666666664

2 1

1 2 1

1 2 1

1 2 1

1 2 1

1 2 1

1 2 1

1 2 1

1 2 1

1 2

3
77777777777775
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Example: Gaussian random force on mass

I the covariance of y is
�y = A�AT

I the 90% confidence ellipsoid is n
y 2 R2 j yT��1y y � F�1

�2
n

(0:9)
o
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Components of a Gaussian random vector

I suppose x � N (0;�), and let c 2 Rn be a unit vector

I let y = cTx

I y is the component of x in the direction c

I y is Gaussian, with E y = 0 and cov(y) = cT�c

I So E(y2) = cT�c

I The unit vector c that minimizes cT�c is the eigenvector of � with the smallest eigenvalue. Then

E(y2) = �min
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