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Random variables

» we have a real-valued random variable © with probability density function (pdf) so that

b
Prob(z € [a,b]) = / p(z)dz

» the mean or expected value of z is E(z) = / zp(z) dz

e}

oo

» the variance of z is var(z) = E((x — p)2) = / (z — p)’p(z) dz

—oo
» mean is linear, so for a,b € R

» E(az+b)=aE(z)+b

» var(az +b) = a2 var(z)



Gaussian random variables

» z is Gaussian if it has probability density function (pdf) given by

(2) = —

P ov2rm
» write this as z ~ N (u, 0?)

» the mean or expected value of z is E(z) =p

» the variance of z is E((w — /,L)z) = g2



Gaussian random variables

pdf for z ~ N(0,1) is

04r

0.35F

0.3r

0.25F

p(z) 0.2}
0.15F

0.1f

0.05

» p is symmetric about the mean

» decays very fast; but p(z) > 0 for all z



Computing probabilities for Gaussian random variables

ez f/

» the Gaussian cumulative distribution function (CDF) is

» the error function is

Fi(a) = Prob(z < a) = 1 ¥ erf( U\[“)

» plot shows u =0 and o = 1,
i

0.8f

FN(a) 0.6
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Computing probabilities for Gaussian random variables

» for z ~ N(0,0?) we have for a >0

a
Prob(z € [—a,a]) = erf| —
(¢ € [~a,al) (U ﬂ>
» some particular values:
» Prob(z € [—0,0]) ~ 0.68
» Prob(z € [—20,20]) ~ 0.9545
» Prob(z € [—30,30]) ~ 0.9973



Continuous random vectors

» suppose R™-valued random vector z has probability density function p® : R™ — R.

» the mean or expected value of z is

E(z) = /R zp°(z) dz



Covariance

» the covariance of z is

o) = E((e - W)z - w7) = [ (e w)(e - w7 (0) ds

R
» We'll often denote the covariance by X = cov(z)

» X is symmetric and positive semidefinite

» X;; is the covariance of the 2'th component z;

Eii = COV(fEi)



Affine transformations

» suppose z is an R™-valued random vector

» let y be an affine function of z, given by y = Az + b

» the mean of y is the same affine function of the mean of z
E(y) = AE(z)+b

» the covariance of y is a linear function of the covariance of z

cov(y) = Acov(z)A"



Affine transformations of random vectors

» for the mean, we have

Ey = E(Az + b)

:/ (Az + b)p(z) dz

= b+A/ zp(z)dz
Rn

=b+ AEz

» and for the covariance
cov(y) =E((y —Ey)(y — Ey)")
=E(A(z —Ez)(z — Exz)TA")
= AE((z —Ez)(z — Ez)") A"
= Acov(z)AT
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Mean-square deviation

» Suppose z is an R™-valued random variable, with mean p.
» The mean square deviation from the mean is given by

E(llz — ull?) = trace cov(z)
» because
E(lle = ull*) =E((z — p)"(z — )
= Etrace((z — p)" (z — p))
=Etrace((z — pu)(z —pu)")  since trace(AB) = trace(BA)

= trace E((z —p)(z— ,u,)T) since EAz = AEz
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The mean-variance decomposition

» the mean square of a random variable z is
E(||m||2) = trace(cov(m)) + ||Ez|)?

» this holds because

E(ll=I*)

E(llz — p + ul)

E(llz — ull® + 26" (z — p) + ||ull?)

E(llz — pll®) + 26" E(z — p) + || ull?

» called the mean-variance decomposition
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Correlation coefficient

» let & = cov(z). The correlation coefficient of z; and z; is
pi; = — 2
ij =
v/ Biidjj
» Since & > 0, we have |p;;| <1

» If pi; =0 then z; and z; are called uncorrelated.
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Correlation and covariance

» the correlation matrix of random vector z is
T
corr(z) = E(zz”)
» not to be confused with the correlation coefficient!
» If Ez = 0 then corr(z) = cov(z)
» The mean square of z is E(||:c||2) = trace corr(z)
» The correlation-covariance decomposition is

corr(z) = cov(z) + (Ez)(Ez")

» same approach as the mean-variance formula
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Gaussian random vectors

» the R™-valued random variable z is called Gaussian if it has pdf

1

exp(-;@ — WS e —#))

> write this as 2 ~ N (g, 2), here 2 = 27 and & > 0
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Gaussian random vectors

» suppose z ~ N (u,2). Then the mean of z is

Ez=p

» and the covariance of z is
cov(z) =%
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Ellipsoids

» the Gaussian pdf is constant on the surface of the ellipsoids

Sa={eeR" |@@-p B e-p) <a}

» center is at u, semiaxis lengths are y/aX;(X).

» example has
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Gamma function

» the gamma function is

I'(z) = / t* e tdt forz >0
0
» forz >0
Iz +1) = zl(z)
» I'(1) =1, so for integer z > 1

I(z) = (z — 1)!

I'(z)

120
100
80
60

40

.

18



The x? distribution

n=1
1
0
0.5
n=2
0
» the x2 probability density function is 04 -
P2 (2) = s 2B leE A
22(n/2) .
» A family of pdfs, one for each n >0 02 n4
0.1 ]
» Ifz~x2 thenEz=n \
0
02
n=5
o \
0
0 2 4 6 8 10




Gaussian random vectors and confidence ellipsoids

» supposez is Gaussian, i.e., ¢ ~ N (u,Z), where u € R™ and & € R™*™. Define the random variable
z=(2—p) T (e —p)
which is a measure of the distance of z from
» z has a x2 distribution
» Hence prob. that z lies in the ellipsoid S, = {:c ER™ | (z—p)T2 Nz —p) < a}
Prob(z € Sa) = F,2 (a)
% fa=n

» for example F, 2 (a) ~
09 fa=n+2yn 90% confidence ellipsoid
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Confidence ellipsoids

The plot shows the confidence ellipsoids and 200 sample points.
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Marginal probability density functions

Z1

» suppose z is an RV with pdf p® : R™” - R, and z = { } , where z; € R".

T2

» define the marginal pdf of z; to be the function p®* such that

Prob(z, € W) = / P (2)dz forall W C R"
w

» we also know that

Prob(z, e W) = / / p°(z1,z2) dz2 dzy
W JzoeR?—T7
» since these are equal, we have

P (2) = / P (21, 25) de
zoERPT
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The marginal pdf of a Gaussian

» suppose z ~ N'(u,2), and
T1 211 212
r = 3=
|:132 :| |: Yo1  Xa2 :|
» let's look at the component z1

» Since z; = [I 0] z, we have the mean

Ez, = [1 0]#:#1
and also the covariance

cov(z;) = [I O]E|:(I):| =Xn

» In fact, the random variable z; is Gaussian; this is not obvious

M1
M2
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Proof: the marginal pdf of a Gaussian

» assume for convenience that Ez = 0. The marginal pdf of z; is

T
z 1|z 1| T

1 p— _
P (ml)_/:;zclexp( 2|:$2:| . |:$2:|>dmz

» we have, by the completion of squares formula
-1 -1 -1
Su ] _[I -3ESe| [3n 0 I
Yo1 a2 0 I 0 (B22 — 2212;11212)_1 —2212;11
» and so, Setting S =Ygy — 2212;11212

T
|::B1 :| E_l |:a:l :| = IJTZ]__III;[ + ((132 — 22121_11121)715_1(:122 — 22121_111121)

o o

0
I

|
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Proof: the marginal pdf of a Gaussian

» hence we have

. 1 pe 1 _ _ _
P (z1) = c1exp (—2:3T2111m1> / exp(—g(mg - Eglﬁlllzl)TS 1(:32 - 22121111:1)> dzo

@2
_ 1 1
= coexp —5:1:1 Y,z

» now cz is determined, because /pa:1 (2)dz = 1, so we don't need to calculate it explicitly.

» therefore, if z ~ N(0,Z) the marginal pdf of z; is Gaussian, and

Ty ~ N(O, 211)
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Example: marginal pdf for Gaussians

2 038

08 1 and z ~ N(0,Z). A simulation of 1000 points is below

» Suppose & =

» all blue and orange points (908) are within 90% confidence ellipsoid for z

» all blue and red points (899) are within 90% confidence interval for z;

25
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Degenerate Gaussian random vectors

b it's convenient to allow ¥ singular, but still & = %7 and & > 0
this means that in some directions, z is not random at all

» obviously density formula does not hold; instead write

3; 0

T=[@ Qz][o 0}[91 Q:]"

where @Q = [Ql Q2 ] is orthogonal, and ©; > 0
columns of Q; are orthonormal basis for range(%)
columns of Q2 are orthonormal basis for null(%)
let | 2| = QTz; then
w - 1

> z ~N(QTu,T1) is non-degenerate Gaussian

> w= g,u is not random
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Changes of variables for random vectors

» suppose f:R™ — R is continuous, and h : R™ — R"™ satisfies

» h is one-to-one and onto; i.e., h is invertible

» Both kh and h~! are differentiable, with continuous derivative

» the derivative of h at z is Dh(z), the Jacobian matrix

(Dh(z)),. = Ohi (z)

ig aa:j

» then for any A C R™
e)dz = [ £(3s)) |det Dr(o)] ay
h(A) A
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Changes of variables for random vectors

» suppose z is an R™-valued random vector, and y = g(z), where g is invertible, and g and g~

continuously differentiable. Then

" (97 (v))
|det(Dg) (97 (v)) |

pY(y) =

» this holds because

Prob(y € A) = / p(y) dy

A

:/ p(z)dz
g~ 1(A)

_ / " (97 (v))
4 |det(Dg)(g71(v))

where D(s™)(v) = ((D9)(s7*(w)) )

%

1

are
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Example: linear transformations

» consider y = Az + b, where A € R™*™ is invertible. Then

" (A (y - b))

Y —
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Linear transformations of Gaussians

» fundamental result: a linear function of a Gaussian random vector is a Gaussian random vector
» suppose £ ~ N (te, Zz), A € R™*™ and b € R™. Consider the linear function of z

y=Az+b

» we already know how means and covariances transform; we have

E(y)= AEz +b cov(y) = Acov(z)A”

» additional fact is that y is Gaussian
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Linear transformations of Gaussians

» to show this, first suppose A € R™*™ is invertible. Let uy = Apz +b and Ty = AN AT,
» we know

(@)= ex 1 z— )T e —
P o (detma)} p( 5@ =1 B ( u))
» so

Y _ pz (A_l(y_b))
p'(y) = det 4]

1
3

1 T —1\Tx—1 4—1
= exp| ——(y—b— Auz) (A Yz A —b— Ay,
\det A|(27) % (det D) ? p( 5 pe) (A7) (y p ))

_ 1

1 Te—1,
_m exp<—2(y—ﬂy) 25 (y l‘y))
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Non-invertible linear transformations of Gaussians

» suppose A € R™*™ and y = Az where z ~ N(0,Z;). The SVD of A is

o o]

A=UxvT=[U; U2]|:0 o |vr

» so we decompose the map into

y=Uw {wl}zﬂz [Zl =vTz
wa z2
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Non-invertible linear transformations of Gaussians

» since V is invertible, we know z ~ N(0, Z.), where

» we know z is Gaussian, hence the marginal z; is Gaussian

z1 ~ N(0,Vi' 2. 1)

» also ws = 0, and since X7 is invertible, w; is Gaussian

wi ~ N (0,2, VI8 V1%1)

» since w = UTy, we have y is a degenerate Gaussian random vector where

> w; = UlTy are the components of y that are Gaussian

» w2 = 0 are the components of y that are not random
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Full-rank case

» when range(A) = R™, i.e., A is full row rank, we have

y ~N(0,A5. A7)
» because the SVD of A is
123

A=U[%: 0] {VIT}

» then y = Uw:, and since U is invertible, we have

y~NO,US VI8 VishUT)
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Example: simulating Gaussian random vectors

» in many languages its easy to generate z ~ N(0, I)

» to generate y ~ N (i, Z), we can use
1
y=X2z+pu

» extremely useful for simulation
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Example: Gaussian random force on mass

» z is the sequence of applied forces, so f(t) = z; for t in the interval [j — 1, j].

» yi1, y2 are final position and velocity

95 85 75 65 55 45 35 25 15 05

Py=Azwhere A= |0 0 0 0 1 1 111

» suppose the forces are Gaussian, and the vector z ~ N (0, &), where

2 1
1 2 1
1 2 1
1 2 1
1 2 1
%= 1 2 1
1 2 1
1 21 > f
1 2 1
L 12_
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Example: Gaussian random force on mass

» the covariance of y is

» the 90% confidence ellipsoid is

velocity

-20

-100

%, = AnAT

{ve®R | y57'y <FZ(09) }

position

100
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Components of a Gaussian random vector

» suppose z ~ N(0,%), and let ¢ € R™ be a unit vector
b lety=cTz

» y is the component of z in the direction ¢

» y is Gaussian, with Ey = 0 and cov(y) = ¢"Z¢

» So E(y?) =c"xc

» The unit vector ¢ that minimizes cTZc is the eigenvector of & with the smallest eigenvalue. Then

E(¥”) = Amin
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