Eigenvectors and diagonalization

- eigenvectors
- diagonalization
Eigenvectors and eigenvalues

λ ∈ ℂ is called an *eigenvalue* of \(A \in \mathbb{C}^{n \times n} \) if

\[
\chi(\lambda) = \text{det}(\lambda I - A) = 0
\]

equivalent to:

- there exists nonzero \(v \in \mathbb{C}^n \) s.t. \((\lambda I - A)v = 0\), *i.e.*, \(Av = \lambda v \)

 any such \(v \) is called an *eigenvector* of \(A \) (associated with eigenvalue \(\lambda \))

- there exists nonzero \(w \in \mathbb{C}^n \) s.t. \(w^T(\lambda I - A) = 0\), *i.e.*, \(w^T A = \lambda w^T \)

 any such \(w \) is called a *left eigenvector* of \(A \)
Complex eigenvalues and eigenvectors

- if v is an eigenvector of A with eigenvalue λ, then so is αv, for any $\alpha \in \mathbb{C}$, $\alpha \neq 0$
- even when A is real, eigenvalue λ and eigenvector v can be complex
- when A and λ are real, we can always find a real eigenvector v associated with λ: if $Av = \lambda v$, with $A \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{R}$, and $v \in \mathbb{C}^n$, then

 $$A\Re v = \lambda \Re v, \quad A\Im v = \lambda \Im v$$

 so $\Re v$ and $\Im v$ are real eigenvectors, if they are nonzero
 (and at least one is)

- **conjugate symmetry**: if A is real and $v \in \mathbb{C}^n$ is an eigenvector associated with $\lambda \in \mathbb{C}$, then \bar{v} is an eigenvector associated with $\bar{\lambda}$:

 taking conjugate of $Av = \lambda v$ we get $\overline{Av} = \overline{\lambda v}$, so

 $$A\bar{v} = \overline{\lambda \bar{v}}$$

we'll assume A is real from now on . . .
Scaling interpretation

(assume $\lambda \in \mathbb{R}$ for now; we’ll consider $\lambda \in \mathbb{C}$ later)

if v is an eigenvector, effect of A on v is very simple: scaling by λ

- $\lambda \in \mathbb{R}, \lambda > 0$: v and Av point in same direction
- $\lambda \in \mathbb{R}, \lambda < 0$: v and Av point in opposite directions
- $\lambda \in \mathbb{R}, |\lambda| < 1$: Av smaller than v
- $\lambda \in \mathbb{R}, |\lambda| > 1$: Av larger than v

(we’ll see later how this relates to stability of continuous- and discrete-time systems...)
suppose \(v_1, \ldots, v_n \) is a \textit{linearly independent} set of eigenvectors of \(A \in \mathbb{R}^{n \times n} \):

\[
A v_i = \lambda_i v_i, \quad i = 1, \ldots, n
\]

express as

\[
A \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix}
\]

define \(T = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \) and \(\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n) \), so

\[
AT = T\Lambda
\]
Diagonalization

- T invertible means v_1, \ldots, v_n linearly independent
- similarity transformation by T diagonalizes A
- existence of invertible T such that
 \[T^{-1}AT = \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n) \]
 is equivalent to existence of a linearly independent set of n eigenvectors
- we say A is diagonalizable
- if A is not diagonalizable, it is sometimes called defective
Not all matrices are diagonalizable

Example: \(A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \)

- Characteristic polynomial is \(\chi(s) = s^2 \), so \(\lambda = 0 \) is only eigenvalue.
- Eigenvectors satisfy \(Av = 0v = 0 \), i.e.

\[
\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0
\]

- So all eigenvectors have form \(v = \begin{bmatrix} v_1 \\ 0 \end{bmatrix} \) where \(v_1 \neq 0 \).
- Thus, \(A \) cannot have two independent eigenvectors.
Distinct eigenvalues

if A has distinct eigenvalues then A is diagonalizable

- distinct eigenvalues means $\lambda_i \neq \lambda_j$ for $i \neq j$
- the converse is false — A can have repeated eigenvalues but still be diagonalizable
Diagonalization and left eigenvectors

rewrite $T^{-1}AT = \Lambda$ as $T^{-1}A = \Lambda T^{-1}$, or

\[
\begin{bmatrix}
 w_1^T \\
 \vdots \\
 w_n^T
\end{bmatrix}
A
= \Lambda
\begin{bmatrix}
 w_1^T \\
 \vdots \\
 w_n^T
\end{bmatrix}
\]

where w_1^T, \ldots, w_n^T are the rows of T^{-1}
thus

\[w_i^T A = \lambda_i w_i^T\]
i.e., the rows of T^{-1} are (lin. indep.) left eigenvectors, normalized so that

\[w_i^T v_j = \delta_{ij}\]
(i.e., left & right eigenvectors chosen this way are dual bases)
Diagonalization simplifies many matrix expressions

powers \((i.e., \text{discrete-time solution to } x(k+1) = Ax(k))\):

\[
A^k = (T \Lambda T^{-1})^k
= (T \Lambda T^{-1}) \cdots (T \Lambda T^{-1})
= T \Lambda^k T^{-1}
= T \text{diag}(\lambda_1^k, \ldots, \lambda_n^k) T^{-1}
\]

(for \(k < 0\) only if \(A\) invertible, \(i.e., \text{all } \lambda_i \neq 0\))
Analytic function of a matrix

for any analytic function \(f : \mathbb{R} \to \mathbb{R} \), \textit{i.e.,} given by power series

\[
f(a) = \beta_0 + \beta_1 a + \beta_2 a^2 + \beta_3 a^3 + \cdots
\]

we can define \(f(A) \) for \(A \in \mathbb{R}^{n \times n} \) (\textit{i.e.,} overload \(f \)) as

\[
f(A) = \beta_0 I + \beta_1 A + \beta_2 A^2 + \beta_3 A^3 + \cdots
\]

substituting \(A = T \Lambda T^{-1} \), we have

\[
f(A) = \beta_0 I + \beta_1 A + \beta_2 A^2 + \beta_3 A^3 + \cdots
\]

\[
= \beta_0 TT^{-1} + \beta_1 T \Lambda T^{-1} + \beta_2 (T \Lambda T^{-1})^2 + \cdots
\]

\[
= T \left(\beta_0 I + \beta_1 \Lambda + \beta_2 \Lambda^2 + \cdots \right) T^{-1}
\]

\[
= T \text{diag}(f(\lambda_1), \ldots, f(\lambda_n))T^{-1}
\]