Eigenvectors and diagonalization

- eigenvectors
- diagonalization
Eigenvectors and eigenvalues

λ ∈ ℂ is called an *eigenvalue* of \(A \in \mathbb{C}^{n \times n} \) if

\[
\chi(\lambda) = \det(\lambda I - A) = 0
\]

equivalent to:

- there exists nonzero \(v \in \mathbb{C}^n \) s.t. \((\lambda I - A)v = 0\), *i.e.*, \(Av = \lambda v\)

 any such \(v \) is called an *eigenvector* of \(A \) (associated with eigenvalue \(\lambda \))

- there exists nonzero \(w \in \mathbb{C}^n \) s.t. \(w^T(\lambda I - A) = 0\), *i.e.*, \(w^T A = \lambda w^T\)

 any such \(w \) is called a *left eigenvector* of \(A \)
Complex eigenvalues and eigenvectors

\[A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \Rightarrow \lambda I - A = \begin{bmatrix} \lambda & -1 \\ 1 & \lambda \end{bmatrix} \Rightarrow \lambda^2 + 1 = 0 \]
\[\lambda = \pm i \]

\[\text{if } \psi \text{ is an eigenvector of } A \text{ with eigenvalue } \lambda, \text{ then so is } \alpha \psi, \text{ for any } \alpha \in \mathbb{C}, \alpha \neq 0 \]
\[A\psi = \lambda \psi \]
\[A(\alpha \psi) = \lambda(\alpha \psi) \]

\[\text{even when } A \text{ is real, eigenvalue } \lambda \text{ and eigenvector } \psi \text{ can be complex} \]

\[\text{when } A \text{ and } \lambda \text{ are real, we can always find a real eigenvector } \psi \text{ associated with } \lambda: \text{ if } A\psi = \lambda \psi, \text{ with } \]
\[A \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{R}, \text{ and } \psi \in \mathbb{C}^n, \text{ then } \]
\[A\psi = \lambda \psi \quad \text{so } \Re \psi \text{ and } \Im \psi \text{ are real eigenvectors, if they are nonzero} \]
\[(\text{and at least one is}) \]

\[\text{conjugate symmetry: if } A \text{ is real and } \psi \in \mathbb{C}^n \text{ is an eigenvector associated with } \lambda \in \mathbb{C}, \text{ then } \overline{\psi} \text{ is an} \]
\[\text{eigenvector associated with } \overline{\lambda}: \]
\[\text{taking conjugate of } A\psi = \lambda \psi \text{ we get } \overline{A\psi} = \overline{\lambda \psi}, \text{ so } \]
\[A\psi = \lambda \psi \quad \Rightarrow \quad \overline{A\psi} = \overline{\lambda \psi} \quad \Rightarrow \quad \overline{A} \overline{\psi} = \overline{\lambda \psi} \quad \Rightarrow \quad A\overline{\psi} = \overline{\lambda \psi} \quad \Rightarrow \quad A\overline{\psi} = \overline{\lambda \psi} \]
\[\text{we'll assume } A \text{ is real from now on . . .} \]
Scaling interpretation

\[
y = A\lambda
\]

\[
v \rightarrow y = Av = \lambda v
\]

(assume \(\lambda \in \mathbb{R}\) for now; we’ll consider \(\lambda \in \mathbb{C}\) later)

if \(v\) is an eigenvector, effect of \(A\) on \(v\) is very simple: scaling by \(\lambda\)

- \(\lambda \in \mathbb{R}, \lambda > 0\): \(v\) and \(Av\) point in same direction
- \(\lambda \in \mathbb{R}, \lambda < 0\): \(v\) and \(Av\) point in opposite directions
- \(\lambda \in \mathbb{R}, |\lambda| < 1\): \(Av\) smaller than \(v\)
- \(\lambda \in \mathbb{R}, |\lambda| > 1\): \(Av\) larger than \(v\)

(we’ll see later how this relates to stability of continuous- and discrete-time systems. . .)
Diagonalization

NOT always possible

suppose v_1, \ldots, v_n is a *linearly independent* set of eigenvectors of $A \in \mathbb{R}^{n \times n}$:

$$Av_i = \lambda_i v_i, \quad i = 1, \ldots, n$$

express as

$$A \underbrace{[v_1 \quad \cdots \quad v_n]}_{\text{Suppose}} = \underbrace{[v_1 \quad \cdots \quad v_n]}_{\text{Suppose}} \underbrace{[\lambda_1 \quad \cdots \quad \lambda_n]}_{\text{Suppose}}$$

define $T = [v_1 \quad \cdots \quad v_n]$ and $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$, so

$$AT = T\Lambda$$

$$A = T \Lambda T^{-1}$$
Diagonalization

\[A T = \Sigma \Lambda \]

\[T^{-1} A T = \Lambda \]

- \(T \) invertible means \(v_1, \ldots, v_n \) linearly independent
- similarity transformation by \(T \) diagonalizes \(A \)
- existence of invertible \(T \) such that
 \[T^{-1} A T = \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n) \]
 is equivalent to existence of a linearly independent set of \(n \) eigenvectors
- we say \(A \) is diagonalizable
- if \(A \) is not diagonalizable, it is sometimes called defective

\[A \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ 0 & \cdots & \lambda_n \end{bmatrix} \]

\[A v_i = \lambda_i v_i \]

\(i = 1, \ldots, n \)
Not all matrices are diagonalizable

example: \[A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \]

- characteristic polynomial is \[\chi(s) = s^2 \], so \(\lambda = 0 \) is only eigenvalue
- eigenvectors satisfy \(Au = 0v = 0 \), i.e.
 \[
 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0
 \]
- so all eigenvectors have form \(v = \begin{bmatrix} v_1 \\ 0 \end{bmatrix} \) where \(v_1 \neq 0 \)
- thus, \(A \) cannot have two independent eigenvectors
Distinct eigenvalues

if A has distinct eigenvalues then A is diagonalizable

- distinct eigenvalues means $\lambda_i \neq \lambda_j$ for $i \neq j$
- the converse is false — A can have repeated eigenvalues but still be diagonalizable

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A \mathbf{v} = I \mathbf{v} = \lambda \mathbf{v} = \mathbf{v}$$

$$I \mathbf{v} = \mathbf{v}$$

$$T = I \rightarrow \Lambda = T^{-1} A T$$
Diagonalization and left eigenvectors

Rewrite $T^{-1}A T = \Lambda$ as $T^{-1} A = \Lambda T^{-1}$, or

$A T = T \Lambda$

where w_1^T, \ldots, w_n^T are the rows of T^{-1}

Thus

$w_i^T A = \lambda_i w_i^T$

i.e., the rows of T^{-1} are (lin. indep.) left eigenvectors, normalized so that

$w_i^T v_j = \delta_{ij}$

($i.e.$, left & right eigenvectors chosen this way are dual bases)

$$I = \begin{bmatrix} w_1^T \\ \vdots \\ w_n^T \end{bmatrix} \begin{bmatrix} v_1 & \ldots & v_n \end{bmatrix} = \begin{bmatrix} w_1^T v_1 & \ldots & w_1^T v_n \\ \vdots & \ddots & \vdots \\ w_n^T v_1 & \ldots & w_n^T v_n \end{bmatrix}.$$