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» null(A) is set of vectors mapped to zero by y = Az
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» null(A) is set of vectors orthogonal to all rows of A %*-
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A is called one-to-one if 0 is the only element of its nullspace A el Xo /
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Equivalently,
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» z can always be uniquely determined from y = Az _S'
(i.e., the linear transformation y = Az doesn't ‘lose’ information)
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» mapping from z to Az is one-to-one: different z's map to different y's > X=0 4—&
» columns of A are independent (hence, a basis for their span) A_X = @ nall (A)={°j

/> A has a left inverse, i.e., there is a matrix B € R™*™ s.t. EA =1
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» if A has a left inverse then null(A) = {0} (proof by contradiction)
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/b null(4) = null(AT 4)

» if null(4) = {0} then A is left invertible, because A" A is invertible, so| B = (ATA) "' AT |s a left inverse
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Two interpretations of nullspace

suppose z € null(A), and y = Az represents measurement of z

» z is undetectable from sensors — get zero sensor readings

» z and z + z are indistinguishable from sensors: Az = A(z + z)

null(A) characterizes ambiguity in ¢ from measurement y = Az

alternatively, if y = Az represents output resulting from input z

» z is an input with no result

» z and z + z have same result

null(A) characterizes freedom of input choice for given result



Left invertibility and estimation
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» apply left-inverse B at output of A

» then estimate £ = BAz = z as desired

» non-unique: both B and C are left inverses of A
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range(A) can be interpreted as

» the set of vectors that can be ‘hit’ by linear mapping y = Az

» the span of columns of A a 4 ZD¢ rawae(A) FOSS(b\L awfywﬁ T Com %W(K\'e.
/» the set of vectors y for which Az = y has a solution FO)S(\aLL mmwmmvm'l'
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Onto matrices

A is called onto if range(A) = R™

——— % rmt(A)=m

equivalently,
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» Az =y can be solved in z for any y g ft = AN
» columns of A span R™ j[:
\/b A has a right inverse, i.e., there is a matrix B € R**™ s.t. AB=1
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Onto matrices
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/» if range(A) = R™ then A is right invertible. To see this, let b; be such that Ab; = e;, and let
B=[by,...,bm |, then AB=1.
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» if A is right invertible, then range A = R™, because range(A) D range(AB)

/b A is left invertible iff AT is right invertible
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Interpretations of range

suppose v € range(A),w ¢ range(A)

y = Az represents measurement of

» y = v is a possible or consistent sensor signal

» y = w is impossible or inconsistent; sensors have failed or model is wrong

y = Az represents output resulting from input z

» v is a possible result or output

» w cannot be a result or output

range(A) characterizes the possible results or achievable outputs
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Right invertibility and control

» apply right-inverse C' at input of A

» then output ¥y = ACYdes = Ydes as desired

X= Ca'de,s
a: AX
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