Range and Null Space

Stephen Boyd and Sanjay Lall

EE263 Stanford University

Nullspace of a matrix

$$
\frac{S}{\epsilon} = \begin{cases} x_1, x_2 \epsilon S & x_1 + x_2 \epsilon S \\ x_1 \epsilon S, \alpha \epsilon R & x_1 \epsilon S \end{cases}
$$

the *nullspace* of $A \in \mathbb{R}^{m \times n}$ is defined as

$$
\mathsf{null}(A) = \{ \, x \in \mathbb{R}^n \mid Ax = 0 \, \}
$$

• null(A) is set of vectors mapped to zero by $y = Ax$

• null(A) is set of vectors orthogonal to all rows of A

$$
a_{r}^{T}
$$
\n
$$
\vdots
$$
\n
$$
a_{m}^{T}
$$
\n
$$
\frac{1}{a_{m}^{T}} \mathbf{y} = \begin{bmatrix} a_{1}^{T}x \\ a_{2}^{T}x \\ \vdots \\ a_{m}^{T}x \end{bmatrix} = 0
$$
\n
$$
A(x_{1} + x_{2}) = \underbrace{A x_{1} + A x_{2}}_{\odot} = 0
$$
\n
$$
A(\alpha x_{1}) = \alpha (A x_{1}) = 0
$$
\n
$$
\underline{\delta \circ \underline{\delta}}
$$

 $y = A \underline{x} = A(x + \underline{z})$
= $Ax + A\underline{z}$ **null**(A) gives *ambiguity* in x given $y = Ax$. if $y = Ax$ and $z \in null(A)$, then $y = A(x + z)$ ightharpoon conversely, if $y = Ax$ and $y = A\tilde{x}$, then $\tilde{x} = x + z$ for some $z \in null(A)$ null(A) is also written $N(A)$
 $A_{\tilde{\lambda}} = \tilde{\lambda} - \tilde{\lambda}$
 $A_{\tilde{\lambda}} = A(\tilde{\lambda} - \tilde{\lambda}) = A\tilde{\lambda} - A\tilde{\lambda} = \lambda \tilde{\lambda} - \lambda \tilde{\lambda} = 0$
 $A_{\tilde{\lambda}} = \lambda \tilde{\lambda} - \lambda \tilde{\lambda} = 0$

$A \in \mathbb{R}^{10 \times 20}$ $\left\lceil a_1 \ a_2 \ \cdots \ a_{20} \right\rceil$ **Zero nullspace** $a_i \in \mathbb{R}^{10}$ A is called one-to-one if 0 is the only element of its nullspace $skip$ \rightarrow $kinny$) / $y = Ax_1 = Ax_2$ $null(A) = \{0\}$ \Rightarrow A $(x_1 - x_2) = 0$ Equivalently, \triangleright x can always be uniquely determined from $y = Ax$ (*i.e.*, the linear transformation $y = Ax$ doesn't 'lose' information) lin. indep. ightharpoonup mapping from x to Ax is one-to-one: different x's map to different y's ► columns of A are independent (hence, a basis for their span) $Ax = 0$ A has a *left inverse*, *i.e.*, there is a matrix $B \in \mathbb{R}^{n \times m}$ s.t. $BA = I$ A \in $\mathbb{R}^{n \times n}$ $\sqrt{} A^{\mathsf{T}} A$ is invertible $n \times m$ 3

$A \in \mathbb{R}^{10 \times 20}$ Zero nullspace $BA = T$ $Ax = 0$
BAx = B.0 = 0 $\rightarrow x = 0$ $x \neq 0$ $(A^{T}A)^{-1}$ if A has a left inverse then $null(A) = \{0\}$ (proof by contradiction) $B = (A^T A)^{-1}A^T A = I$ $\sqrt{\bullet}$ null (A) = null $(A^{\mathsf{T}}A)$ if null $(A) = \{0\}$ then A is left invertible, because $A^T A$ is invertible, so $B = (A^T A)^{-1} A^T$ is a left inverse $x \in null(A) \rightarrow Ax = 0 \rightarrow (A^{T}A)x = 0 \rightarrow x \in null(A^{T}A) \rightarrow null(A) \subset null(A^{T}A)$ xe nu ll $(A^{T}A) \rightarrow A^{T}A x = 0 \rightarrow x^{T}A^{T}Ax = 0 \Rightarrow (Ax)^{T}(Ax) = 0 \Rightarrow ||Ax||^{2} = 0$ $u^{\top}u = ||u||^2$ $Ax = 0$
 $Ax = 0$
 $x \in null(A)$ $BAx = 0$ \Rightarrow $Ax = 0$ \Rightarrow null (A^TA) \subset null (A) 4

Two interpretations of nullspace

suppose $z \in null(A)$, and $y = Ax$ represents *measurement* of x

 \triangleright z is undetectable from sensors — get zero sensor readings

 \triangleright x and $x + z$ are indistinguishable from sensors: $Ax = A(x + z)$

null(A) characterizes *ambiguity* in x from measurement $y = Ax$

alternatively, if $y = Ax$ represents *output* resulting from input x

- \triangleright z is an input with no result
- \triangleright x and $x + z$ have same result

null(A) characterizes *freedom of input choice* for given result

Left invertibility and estimation

- \blacktriangleright apply left-inverse B at output of A
- ighthen estimate $\hat{x} = BAx = x$ as desired
- \triangleright non-unique: both B and C are left inverses of A

$$
A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{bmatrix}
$$

$$
\beta A = \beta A = \gamma A
$$

Range of a matrix

the *range* of $A \in \mathbb{R}^{m \times n}$ is defined as

 $\begin{cases} \n\begin{cases} \n\begin{$

$$
y_{1}, y_{2} \in \text{range} (A)
$$

$$
\Downarrow
$$

$$
Ax_{1} = y_{1} \quad A x_{2} = y_{2}
$$

$$
A (x_{1} + x_{2}) = y_{1} + y_{2}
$$

$$
y_{1} + y_{2} \in \text{range} (A)
$$

range (A) can be interpreted as

 \triangleright the set of vectors that can be 'hit' by linear mapping $y = Ax$

the span of columns of the set of vectors y for which $A x = y$ has a solution $\mathsf{range}(A)$ is also written 7 $Y \in \mathbb{R}$ \notin range (A) possible outputs \bot can generate possible measurement $x \in \mathbb{R}^{10}$, $y \in \mathbb{R}^{20} \rightarrow 20$ measurements/sensors exactly 1 sensor is failing l \rightarrow HOW TO FIND IT?

Onto matrices

$$
\begin{cases} \text{null}(A) = \{ \alpha \mid A_{x=0} \} \subseteq \mathbb{R}^{n} \\ \text{range}(A) = \{ A_{x} \mid a \in \mathbb{R}^{n} \} \subseteq \mathbb{R}^{m} \end{cases} \qquad A \in \mathbb{R}^{m}
$$

 $\mathbf \tau$

8

A is called *onto* if **range** $(A) = \mathbb{R}^m$

$$
- \qquad \qquad \mathsf{L} \qquad \mathsf{rank} \ (A) = m
$$

equivalently,

Ax = y can be solved in x for any y
\ncolumns of A span R^m
\nA has a right inverse, *i.e.*, there is a matrix
$$
B \in \mathbb{R}^{n \times m}
$$
 s.t. $AB = I$
\nrows of A are independent $\rightarrow A^{m \times n}$ $\rightarrow n \ge m$
\n $\rightarrow n \ge m$
\n A^T is invertible
\n AA^T is invertible
\n MA^T (B) = null (B^TB)

Onto matrices

$$
AB = A[b_1 \quad b_2 \quad \ldots \quad b_n]
$$
\n
$$
= [Ab_1 \quad Ab_2 \quad \ldots \quad Ab_n]
$$
\n
$$
= [Ab_1 \quad Ab_2 \quad \ldots \quad Ab_n]
$$
\n
$$
range (A) = \underbrace{\{A_n^k \mid x \in \mathbb{R}^N\}}_{\text{Image (AB)}} |x \in \mathbb{R}^N \}
$$

 $\bigvee \blacktriangleright$ if range $(A) = \mathbb{R}^m$ then A is right invertible. To see this, let b_i be such that $Ab_i = e_i$, and let $B = |b_1, \ldots, b_m|$, then $AB = I$.

if A is right invertible, then range $A = \mathbb{R}^m$, because range $(A) \supset$ range (AB) A is left invertible iff A^T is right invertible range (A) = range (AB)
 $\underline{\mathbb{R}}^{m}$ = range (I) = range (A)
 $x = I x$ $y \in \text{range}(AB) \implies y = AB \times$ \Rightarrow $y = A(Bx)$
 \Rightarrow $y \in range(A)$ \overline{L} range $(A) = \mathbb{R}^m$

Interpretations of range

suppose $v \in \text{range}(A), w \notin \text{range}(A)$

- $y = Ax$ represents *measurement* of x
	- $\rightarrow y = v$ is a *possible* or *consistent* sensor signal
	- \blacktriangleright $y = w$ is *impossible* or *inconsistent*; sensors have failed or model is wrong

- $r = Ax$ represents *output* resulting from input x
	- \triangleright v is a possible result or output
	- \blacktriangleright w cannot be a result or output

range(A) characterizes the *possible results* or *achievable outputs*

Right invertibility and control

- \triangleright apply right-inverse C at *input* of A
- ighthen output $y = ACy_{des} = y_{des}$ as desired

```
y = Ax<br>= ACy= \frac{9}{10}
```