
EE263 Homework 8 Solutions

Fall 2023

7.1080. Hovercraft with limited range. We have a hovercraft moving in the plane with two

thrusters, each pointing through the center of mass, exerting forces in the x and y directions

with 100% e�ciency. The hovercraft has mass 1. The discretized equations of motion for the

hovercraft are

x(t+ 1) =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

x(t) +


1
2 0
1 0
0 1

2
0 1

[
u1(t)
u2(t)

]

where x1 and x2 are the position and velocity in the x-direction, and x3, x4 are the position

and velocity in the y-direction. Here

u(t) =

[
u1(t)
u2(t)

]
is the force acting on the hovercraft for time in the interval [t, t+ 1). Let the position of the

vehicle at time t be q(t) ∈ R2.

a) The hovercraft starts at the origin. We'd like to apply thrust to make it move through

points p1, p2, p3 at times t1, t2, t3, where

p1 =

[
1
−1

2

]
p2 =

[
0
1

]
p3 =

[
−3

2
0

]
t1 = 6 t2 = 40 t3 = 50

We will run the hovercraft on the time interval [0, 70]. We'd like to apply a sequence

of inputs u(0), u(1), . . . , u(70) to make the hovercraft position pass through the above

sequence of points at the speci�ed times.

We would like to �nd the sequence of inputs that drives the hovercraft through the

desired points which has the minimum cost, given by the sum of the squares of the

forces:
70∑
t=0

∥u(t)∥2

To do this, pick Ahov and ydes to set this problem up as an equivalent minimum-norm

problem, where we would like to �nd the minimum-norm useq which satis�es

Ahovuseq = ydes

where useq is the sequence of force inputs

useq =


u(0)
u(1)
...

u(70)
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Plot the trajectory of the hovercraft using this input, and the way-points p1, . . . , p3. Also
plot the optimal u against time.

b) Now we would like to compute the trade-o� curve between the accuracy with which the

mass passes through the waypoints and the norm of the force used. Let our two objective

functions be

J1 =
3∑

i=1

∥q(ti)− pi∥2 = ∥Ahovuseq − ydes∥2

and

J2 =
70∑
t=0

∥u(t)∥2

By minimizing the weighted sum

J1 + µJ2

for a range of values of µ, plot the trade-o� curve of J1 against J2 showing the achiev-

able performance. This above trade-o� curve shows how we can trade-o� between how

accurately the hovercraft passes through the waypoints and how much input energy is

used.

c) For each of the following values of µ

{ 10
p
2 | p = −2, 0, 2, . . . , 10 }

plot the trajectories all on the same plot, together with the waypoints.

d) Now suppose we are controlling the hovercraft by radio control, and the maximum range

possible between the transmitter and receiver is 2 (in whatever units we are using for

distance.) Notice that, if we use the minimum-norm input then the hovercraft passes

out of range, both when making its �rst turn and on the �nal stretch (between times 50

and 70).

We'd like to do something about this, but trading o� the input norm as above doesn't

do the right thing; if µ is large then the hovercraft stays within range, but misses the

waypoints entirely; if µ is small then it comes close to the waypoints, but goes out of

range. Notice that this is particularly a problem on the �nal stretch between times 50

and 70; explain why this is.

e) One remedy for this problem is to solve a constrained multiobjective least-squares prob-

lem. We would like to impose the constraint that

Ahovuseq = ydes

that is, achieve zero waypoint error J1 = 0. We can attempt to keep the hovercraft in

range by trading o� the sum of the squares of the position

J3 =

70∑
t=0

∥q(t)∥2
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against input cost J2 subject to this constraint. To do this, we'll solve

minimize J3 + γJ2

subject to Ahovuseq = ydes

First, �nd the matrix W so that the cost function is given by

J3 + γJ2 = ∥Wuseq∥2

f) Now we have a problem of the form

minimize ∥Wu∥2

subject to Au = ydes

This is called a weighted minimum-norm solution; the only di�erence from the usual

minimum-norm solution to Au = ydes is the presence of the matrix W , and when W = I
the optimal u is just given by uopt = A†ydes. Show that the solution for general W is

uopt = Σ−1AT (AΣ−1AT )−1ydes

where Σ = W TW . (One way to do this is using Lagrange multipliers.) Use this to solve

the remaining parts of this problem.

g) For each of the following values of γ

{ 10
p
2 | p = 0, 2, 4, . . . , 20 }

Plot the trajectories all on the same plot, together with the waypoints. Explain what

you see.

h) By trying di�erent values of γ, you should be able to �nd a trajectory which just keeps the
hovercraft within range. Plot the trajectory of the hovercraft; what is the corresponding

value of γ? Is this the smallest-norm input u that just keeps the hovercraft within range,

and drives the hovercraft through the waypoints? Explain why, or why not.

i) For a range of values of γ, plot the trade-o� curve of J3 against J2 showing the achievable
performance.

Solution.

a) Setting

C =

[
1 0 0 0
0 0 1 0

]
gives the position of the hovercraft at time t as

y(t) =

t−1∑
τ=0

CAt−1−τBu(τ)
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The parameters for the least-squares problem are therefore

Ahov =

 CAt1−1B CAt1−1 · · · CB 0 0 . . . 0
CAt2−1B CAt2−2B · · · 0
CAt3−1B CAt3−2B · · · 0

 ydes =

 p1
p2
p3


Solving this least squares problem gives optimal trajectory

−2 −1 0 1 2

−2

−1

0

1

2

The corresponding optimal input sequence is below.

0 10 20 30 40 50 60 70
−0.05

0

0.05

0.1

b) The weighted sum objective is

J1 + µJ2 =

∥∥∥∥[ Ahov√
µI

]
useq −

[
ydes
0

]∥∥∥∥2
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where

useq =

 u(0)
...

u(69)


and so the optimal input sequence is given by

useq =

[
Away√
µI

]† [
ydes
0

]
Choosing values of µ between 1 and 107 using mus=logspace(0,7,50), the trade-o�

curve is shown below.
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c) All of the trajectories together are
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We can see clearly that increasing µ reduces the accuracy with which the trajectory

passes through the waypoints.

d) On the �nal stretch the input is zero, and so is una�ected by increasing µ. We were

attempting to use the heuristic 'keeping u small keeps x small' but this fails, because

when u = 0 the hovercraft just keeps going in a straight line.

e) We would like to minimize J3+γJ2 subject to the constraints that the hovercraft moves

through the waypoints. Denote the sequence of positions of the hovercraft by

yseq =

 y(0)
...

y(T )


where T = 70. Then we have

yseq = Tuseq

where T is the Toeplitz matrix

T =


0

CB 0
CAB CB 0
...

. . .

CAT−1B CAT−2B . . . CB


Now the cost function is

J3 + γJ2 = ∥Tuseq∥2 + γ∥useq∥2

= ∥Wuseq∥2
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where

W =

[
T√
γI

]
f) We'd like to solve

minimize ∥Wu∥2

subject to Au = ydes

One way to solve this is using Lagrange multipliers; if we augment the cost function by

the Lagrange multipliers multiplied by the constraints, we have

L(u, λ) = uTΣu+ λT (Au− ydes)

and the optimality conditions are

∂L

∂u
= 2uToptΣ+ λTA = 0

∂L

∂λ
= uToptA

T − yTdes = 0

The �rst condition gives

uopt = −1

2
Σ−1ATλ

and substituting this into the second we have

−1

2
AΣ−1ATλ = ydes

hence

λ = −2(AΣ−1AT )−1ydes

and

uopt = Σ−1AT (AΣ−1AT )−1ydes

as desired.
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g) The trajectory for a range of γ values is shown below. (Actually these are clearer on

separate plots)
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We can see the trade-o� clearly; decreasing γ causes the hovercraft to try very hard to
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stay close to the origin. Also notice the asymmetry caused by the di�erent times at

which the hovercraft must be at the waypoints.

h) A good choice of gamma is about 1.7 × 104. Here the trajectory just remains within

range, as shown below.

−2 −1 0 1 2

−2

−1

0

1

2

This is not the smallest-norm u that keeps the hovercraft within range and drives the

hovercraft through the waypoints, because we are minimizing the sum of the squares

of ∥q(t)∥, rather than constraining each ∥q(t)∥ independently. You can see this in the

plot, since in the �nal stretch the hovercraft is expending extra e�ort to stay well within

range, and this excessive input could be reduced.

In fact, one can compute the exact optimal, but this is not required and not covered in

this course; (an approximation of) it is below.
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i) The trade-o� is below.

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

100

J
2

J
3

Notice that the vertical asymptote occurs when J2 ≈ 0.03; this is the minimum-norm of

u which drives the hovercraft through the desired trajectory, as seen in part (b).

code that solves this problem

helper functions

function y=vec(x)

% VEC produces a vector of length m*n from an m by n matrix
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%

% function y=vec(x)

%

% Given an m by n matrix x, y=vec(x) constructs a vector y

% consisting of the columns of x stacked on top of each other

%

[m,n] = size(x);

y = reshape(x,m*n,1);

function T=sys_toeplitz(A,B,C,D,out_times,in_times);

% SYS_TOEPLITZ computes toeplitz matrices for a discrete-time LDS

%

% T=sys_toeplitz(A,B,C,D,out_times,in_times);

%

% A,B,C,D specify a discrete-time state-space realization

%

% out_times and in_times are row vectors

%

% for example, if out_times is [1,2,4] and in_times is [0:10]

% then T is the matrix which maps

%

% [u(0); u(1); ... u(10)] to [y(1); y(2); y(4)]

%

% Notice that T is Toeplitz if out_times and in_times are

% both of the form a:b

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% setup parameters

% number of states

n=size(A,1);

% num inputs and outputs

ny=size(C,1);

nu=size(B,2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% construct the Toeplitz matrix

% this is neither efficient nor numerically reliable for big matrices

% but is simple and works well for small cases
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T=[];

for r=out_times

% now create a row for this output time

T_row=[];

for s=in_times

% three cases; either CA^tB, D, or 0

if s<r

% below the diagonal

this_block= C*A^(r-s-1)*B;

elseif s==r

% on the diagonal

this_block=D;

else

% above the diagonal

this_block=zeros(ny,nu);

end

T_row=[T_row, this_block];

end

T=[T; T_row];

end

main code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% compute min-norm input that drives a hovercraft through a

% given set of waypoints

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% parameters

% desired radius

r_max=2;

% desired time steps and positions
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way_times=[ 6 40 50 ];

way_points=[ 1, 0, -1.5 ;

-0.5, 1, 0 ];

% final time step

t_max=70;

% sampling time

h=1;

% discrete-time system

A=[1 h 0 0 ;

0 1 0 0 ;

0 0 1 h ;

0 0 0 1 ];

B=[h^2/2 0;

h 0;

0 h^2/2 ;

0 h ];

C=[ 1 0 0 0 ;

0 0 1 0 ];

D=[ 0 0 ;

0 0 ];

% number of states

n=size(A,1);

% num inputs and outputs

ny=size(C,1);

nu=size(B,2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% real work is here

% toeplitz matrix mapping inputs to position at way_times

A_hov=sys_toeplitz(A,B,C,D, way_times, 0:t_max-1);

% find minimum norm input

u_tmp=pinv(A_hov)*vec(way_points);

% for convenience of simulation, reshape the inputs
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% so that u_opt(:,k+1) is the input vector at time k

u_opt=reshape(u_tmp,2,t_max);

% simulate

x=zeros(n,t_max+1);

for k=0:t_max-1

x(:,k+2)=A*x(:,k+1) + B*u_opt(:,k+1);

end

y=C*x;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% everything from here on is just plotting

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% plot trajectory in the plane

figure(1);

clf;

hold on;

axis equal;

axis([-2.5,2.5,-2.5,2.5]);

grid;

box on;

% plot radio range

[xs,ys]=ellipse(r_max^2*eye(2),[0;0]);

plot(xs,ys,'r');

% plot way points

for k=1:size(way_times,2)

plot(way_points(1,k),way_points(2,k),'ko');

end

% plot trajectory

plot(y(1,:),y(2,:),'.-');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% plot thruster input versus time

figure(2);

clf;

hold on;
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grid;

h=plot((0:t_max-1),u_opt(1,1:t_max),'b.-');

h=plot((0:t_max-1),u_opt(2,1:t_max),'r.-');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% for a hovercraft

% compute the trade-off curve of input norm to distance norm

% subject to the constraint that

% the trajectory passes through the waypoints

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% parameters

% desired radius

r_max=2;

% desired time steps and positions

way_times=[ 6 40 50 ];

way_points=[ 1, 0, -1.5 ;

-0.5, 1, 0 ];

n_way_points=size(way_points,2);

% final time step

t_max=70;

% sampling time

h=1;

% discrete-time system

A=[1 h 0 0 ;

0 1 0 0 ;

0 0 1 h ;

0 0 0 1 ];

B=[h^2/2 0;

h 0;

0 h^2/2 ;

0 h ];
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C=[ 1 0 0 0 ;

0 0 1 0 ];

D=[ 0 0 ;

0 0 ];

% number of states

n=size(A,1);

% num inputs and outputs

ny=size(C,1);

nu=size(B,2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% compute trade-off for weighted min-norm problem

% toeplitz matrix mapping inputs to position at way_times

A_hov=sys_toeplitz(A,B,C,D, way_times, 0:t_max-1);

% toeplitz matrix mapping inputs to sequence of positions

A_pos=sys_toeplitz(A,B,C,D, 0:t_max, 0:t_max-1);

% desired gamma values

gammas=logspace(0,5,40);

% space to save costs

J2=[];

J3=[];

for i=1:size(gammas,2)

this_gamma=gammas(i);

% weight parameter - sigma inverse

sig_inv=inv(A_pos'*A_pos + this_gamma*eye(t_max*nu));

% stack up the way_points

y_des=reshape(way_points,2*n_way_points,1);

% compute input that minimizes weighted cost

lambda=(A_hov*sig_inv*A_hov')\y_des;

u=sig_inv*A_hov'*lambda;
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% compute corresponding trajectory in the plane

y=A_pos*u;

% keep track of achieved costs

J3(i) = norm(y)^2;

J2(i) = norm(u)^2;

% store a nicely shaped y for plotting

y_keep{i}=reshape(y,2,t_max+1);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% everything from here is just plotting

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% first plot trade off curve

% figure setup

figure(1);

clf;

hold on;

grid;

axis([0,3,0,200]);

% plot

plot(J2,J3,'.-');

xlabel('J_2 position cost');

ylabel('J_3 input cost');

title('trade off curve')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% now plot all the different inputs

% loop over each gamma value

for i=1:size(gammas,2)

figure(2);

clf;

hold on;

axis equal;

axis([-2.5,2.5,-2.5,2.5]);

grid;
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box on;

title(sprintf('gamma=%g',gammas(i)));

% plot radio range

[xs,ys]=ellipse(r_max^2*eye(2),[0;0]);

plot(xs,ys,'r');

% plot way points

for k=1:size(way_times,2)

plot(way_points(1,k),way_points(2,k),'ko');

end

% plot trajectory

y=y_keep{i};

plot(y(1,:),y(2,:),'.-');

% wait for 100 milliseconds between plots

pause(0.1);

end

13.2030. A method for rapidly driving the state to zero. We consider the discrete-time linear

dynamical system

x(t+ 1) = Ax(t) +Bu(t),

where A ∈ Rn×n and B ∈ Rn×k, k < n, is full rank. The goal is to choose an input u that

causes x(t) to converge to zero as t → ∞. An engineer proposes the following simple method:

at time t, choose u(t) that minimizes ∥x(t + 1)∥. The engineer argues that this scheme will

work well, since the norm of the state is made as small as possible at every step. In this

problem you will analyze this scheme.

a) Find an explicit expression for the proposed input u(t) in terms of x(t), A, and B.

b) Now consider the linear dynamical system x(t+ 1) = Ax(t) +Bu(t) with u(t) given by

the proposed scheme (i.e., as found in (a)). Show that x satis�es an autonomous linear

dynamical system equation x(t+ 1) = Fx(t). Express the matrix F explicitly in terms

of A and B.

c) Now consider a speci�c case:

A =

[
0 3
0 0

]
, B =

[
1
1

]
.

Compare the behavior of x(t + 1) = Ax(t) (i.e., the orginal system with u(t) = 0) and
x(t + 1) = Fx(t) (i.e., the original system with u(t) chosen by the scheme described

above) for a few initial conditions. Determine whether each of these systems is stable.
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Solution.

a) We should choose u(t) such that ∥x(t+ 1)∥ = ∥Ax(t) +Bu(t)∥ is minimized. This is

simply a least-squares problem in the form minx∥ȳ − Āx̄∥ where ȳ := Ax(t), Ā := −B
and x̄ := u(t). Therefore the minimizing u(t) is

u(t) = x̄ls = (ĀTĀ)−1ĀTȳ = −(BTB)−1BTAx(t).

b) We have

x(t+ 1) = Ax(t) +Bu(t)

= Ax(t)−B(BTB)−1BTAx(t)

= (I −B(BTB)−1BT)Ax(t),

and therefore

F = (I −B(BTB)−1BT)A.

c) With A and B as given

F =

[
0 1.5
0 −1.5

]
.

The eigenvalues of A are 0, 0 and as a result x(t + 1) = Ax is stable. However, the

eigenvalues of F are 0, −1.5 and therefore F is unstable. Thus, this method, though

reasonable sounding, not only does not rapidly drive the state to zero � it can actually

destabilize a stable system! The state trajectory of the original system x(t+1) = Ax(t)
and for the system x(t + 1) = Fx(t) are shown in Figures 1 and 2 respectively for two

initial conditions. Clearly, for the system x(t+1) = Ax(t), x(t) goes to zero as t increases
(actually just after two steps), while for the system x(t + 1) = Fx(t), ∥x(t)∥ increases

as t increases.

18.1250. Chasing a sea monster. A sea monster is loose in the Paci�c Ocean! Your monster-chasing

colleague has been measuring the sea monster's movements and has predicted it will surface

at m positions pi ∈ R2 at times si. Here pi is the ith column of the matrix P given by

P =

[
1 1.75 2.4 2 0.5 0

0.75 0.6 1.2 2.3 0.75 0

]
and the times s = (2, 5, 8, 11, 17, 20). You plan to observe the monster with a drone. Unfor-

tunately the sea monster ate the last two drones you sent and you are almost out of research

funding so your drone's sensors are not very good, and the drone must be exactly in the right

position to observe the monster.

a) The dynamics of the drone are

q̈ = u

where q ∈ R2 is the position of the drone, and u ∈ R2 is an input force. Write this as a

linear dynamical system of the form

ẋ = Ax+Bu

y = Cx

where y ∈ R2 is the position of the drone.

19



0 5 10

−2

−1

0

1

2

0 5 10

−2

−1

0

1

2

0 5 10

−3

−2

−1

0

1

2

3

0 5 10

−3

−2

−1

0

1

2

3

x
1

x
1

x
2

x
2

tt

tt

x(0) = [2 − 0.5]Tx(0) = [2 − 0.5]T

x(0) = [−1 1]Tx(0) = [−1 1]T

Figure 1: state trajectory for system x(t+1) = Ax(t) for x(0) = [2 −0.5]T and x(0) = [−1 1]T
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Figure 2: state trajectory for system x(t+1) = Fx(t) for x(0) = [2 −0.5]T and x(0) = [−1 1]T
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b) We will use sample period h. Assume that the force input is piecewise constant on

sample intervals, and construct the exact discretization

xd(k + 1) = Adxd(k) +Bdud(k)

yd(k) = Cdxd(k)

where xd(k) = x(kh), and similarly for yd and ud.

c) The drone starts at the origin with zero velocity, and we would like to move the drone

so that y(si) = pi for i = 1, . . . ,m. We will operate the drone on the time interval [0, T ]
where T = sm. For convenience, let N = T/h. Since drone batteries are limited, we

would like to minimize

J =
N−1∑
k=0

∥ud(k)∥2

Explain in detail how you would solve this problem.

d) Use your method to compute the optimal input u, and plot u versus time. Use h = 0.1.

e) Report the optimal value of J that you obtained.

f) Plot the trajectory of the drone. Use axes q1 and q2, so that the plot shows the path

followed by the drone. Mark on your plot the points pi where the monster surfaces.

g) Draw a sea monster for 1 point of extra credit.

Solution.

a) The dynamics are

ẋ = Ax+Bu

y = Cx

where

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 B =


0 0
1 0
0 0
0 1

 C =

[
1 0 0 0
0 0 1 0

]

b) We have

Ad =


1 h 0 0
0 1 0 0
0 0 1 h
0 0 0 1

 Bd =


h2/2 0
h 0
0 h2/2
0 h

 Cd =

[
1 0 0 0
0 0 1 0

]
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c) We want to constrain the drone's position yd(si) for i = 1, . . . ,m. This is several

constraints and we will have to concatenate them into one large equality constraint. We

have

yd(t) =
[
CdA

t−1
d Bd . . . CdAdBd CdBd 0 . . . 0

]  ud(0)
...

ud(N − 1)


= Htu

De�ne ki = si/h and let the matrices H and z be

H =

 Hk1
...

Hkm

 z =

 p1
...

pm


Then this is a minimum norm problem, and so the optimal u is given by

h = H†z

d) The plot is below.
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e) The optimal J is J = 12.90.

f) The trajectory is shown below.
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g) Sea monster.

18.2890. Linear dynamical systems for portfolio management. We consider a portfolio of n
�nancial assets (like stocks) and cash, which we manage over T time steps of unit length

(e.g. one month). We call xt ∈ Rn+1 for t = 1, . . . , T our state vector. The �rst n elements

are our positions in each of the assets, in dollars, and the last element is the dollar amount of

cash we hold. Every element of x can be either positive (for long positions) and negative (for

short or borrowing). For t = 1, . . . , T − 1, the transition from xt to xt+1 is composed of two

steps.

� First, the portfolio positions change value because of market returns. Let µ ∈ Rn
++ be

the vector of returns, where Rn
++ is the set of all vectors of length n with strictly positive
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entries. We de�ne the post-return portfolio x̃t to be

(x̃t)i =

{
µi(xt)i i = 1, . . . , n,

(xt)i i = n+ 1.

(Intuitively, cash is unchanged, and the asset positions are multiplied by the correspond-

ing element of the vector of returns.) For simplicity we assume that the vector of returns

does not change in time.

� Then we trade. We can exchange any amount of cash for the corresponding amount

of any of the assets. Note that the only valid trades are cash for asset. If you wish

to trade some amount of an asset with the same amount of another asset, you have to

perform two trades: trade the �rst asset with cash, and then trade cash with the second

asset. (Think carefully about this de�nition of trade when you formulate the transaction

costs.) For example, if we buy c > 0 dollars of the �rst asset and sell d > 0 dollars of

the second asset the state evolves as

xt+1 = x̃t +



c
−d
0
...

0
−(c− d)


.

Finally, we de�ne the portfolio value vt ∈ R for t = 1, . . . , T to be

vt = 1Txt.

a) Formulate the problem as a linear dynamical system of the form

xt+1 = Axt +But, t = 1, . . . , T − 1.

The control vector ut should have dimension n.

b) Assume that our trades incur quadratic transaction costs with parameter ρ > 0. For

example, if at time t we buy c > 0 dollars of the �rst asset, and we sell d > 0 dollars of

the second asset (the example above), then the transaction costs for the transition xt to
xt+1 are

ρ(c2 + d2).

(Be careful, they are not ρ(c + d)2.) Explain how to solve the problem of maximizing

the �nal value of the portfolio vT minus the total transaction costs. (The sequence of

controls u1, . . . , uT−1 that achieves the maximum should be a function of A, B, and ρ).
Use methods from EE263.

c) Apply your method to the following data.

T = 12;

x_1 = [1000, 1000, 0, 1000, 0, 0];

mu = [1.001, 1.003, 1.004, 1.006, 1.007];

rho = 0.0001;
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What is the �nal value vT ? What are the total transaction costs? Plot the trajectories

of the portfolio positions xt. (On the same plot you should draw n+1 lines, one for each
of the assets and cash, with time on the x-axis.)

d) Now assume that we aim to liquidate an initial portfolio, which means that at time T
we want to have zero positions in any of the n assets and only hold cash. We thus

impose the constraint (xT )i = 0, for i = 1, . . . , n. Explain how to solve the problem of

maximizing the �nal portfolio value (in this case, all cash) minus the transaction costs

with this additional constraint. Use methods from EE263.

e) Apply your method to the data given above. What is the �nal value vT ? What are the

total transaction costs? Plot the trajectories of the portfolio positions xt. (On the same

plot you should draw n+ 1 lines, one for each of the assets and cash, with time on the

x-axis.)

Solution.

a) We de�ne the vector

µ̃ =

[
µ
1

]
,

then

x̃t = diag(µ̃)xt,

and we call

A = diag(µ̃).

We represent the trades by a vector ut ∈ Rn for t = 1, . . . , T − 1. Each element is the

dollar amount of each of the assets that we exchange for cash. Then the matrix B is

B =


1 0 · · · 0
0 1 0
...

. . .
...

0 1
−1 −1 · · · −1

 .

We thus have that

xt+1 = Axt +But, t = 1, . . . , T − 1.

b) The �nal state is given by

xT = AT−1x1 +
T−1∑
t=1

AT−t−1But

or equivalently

xT = AT−1x1 + BTU
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with

BT =
[
AT−2B AT−3B · · · B

]
, U =


u1
u2
...

uT−1

 .

Thus, the �nal value of the portfolio is given by

vT = 1TAT−1x1 + 1TBTU .

The quadratic transaction costs are

ρ∥U∥2.

The maximization problem is

maximize vT − ρ∥U∥2

since the �rst term of vT is a constant, this is equivalent to

maximize 1TBTU − ρ∥U∥2

the solution is (by the �rst order condition, since the function is strictly concave)

U =
1

2ρ
B1.

c) The �nal value and total transaction costs are

vT = 3335.06, ρ∥U∥2 = 111.24, vT − ρ∥U∥2 = 3223.81.

The yellow line is cash, the others are the asset positions.
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d) The optimization problem is

maximize vT − ρ∥U∥2
s.t. (xT )i = 0 i = 1, . . . , n.

Let x̄t ∈ Rn be the �rst n elements of each vector xt. Then we have

x̄t+1 = diag(µ)x̄t + Iut,

x̄T = diag(µ)T−1x̄1 +
T−1∑
t=1

diag(µ)T−t−1ut

or

x̄T = diag(µ)T−1x̄1 + CTU

with

C =


diag(µ)T−2

diag(µ)T−3

...

I

 .

Thus the optimization problem is

maximize vT − ρ∥U∥2
s.t. CTU = −diag(µ)T−1x̄1.

We could solve this problem by introducing a Lagrange multiplier, but instead we trans-

form the problem by subtracting the optimal solution to (b)

U ′ = U − 1

2ρ
B1

The objective function is

1TBT (U ′ +
1

2ρ
B1)− ρ∥U ′ +

1

2ρ
B1∥2.

Expanding the squared norm and ignoring constant terms we obtain that the problem

is equivalent to
maximize −ρ∥U ′∥2

s.t. CTU ′ = y

where

y = −diag(µ)T−1x̄1 −
1

2ρ
CTB1.

Note that C is full rank. The solution (least-norm underdetermined system) is

U ′ = C(CTC)−1y

and

U = C(CTC)−1y +
1

2ρ
B1.
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e) The �nal value and total transaction costs are

vT = 3120.65, ρ∥U∥2 = 58.72, vT − ρ∥U∥2 = 3061.94.

The yellow line is cash, the others are the asset positions.
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