
EE263 Homework 7 Solutions
Fall 2023

8.1320. Portfolio selection with sector neutrality constraints. We consider the problem of
selecting a portfolio composed of n assets. We let xi ∈ R denote the investment (say, in
dollars) in asset i, with xi < 0 meaning that we hold a short position in asset i. We normalize
our total portfolio as 1Tx = 1, where 1 is the vector with all entries 1. (With normalization,
the xi are sometimes called portfolio weights.)

The portfolio (mean) return is given by r = µTx, where µ ∈ Rn is a vector of asset (mean)
returns. We want to choose x so that r is large, while avoiding risk exposure, which we explain
next.

First we explain the idea of sector exposure. We have a list of k economic sectors (such as
manufacturing, energy, transportation, defense, . . .). A matrix F ∈ Rk×n, called the factor
loading matrix, relates the portfolio x to the factor exposures, given as Rfact = Fx ∈ Rk. The
number Rfact

i is the portfolio risk exposure to the ith economic sector. If Rfact
i is large (in

magnitude) our portfolio is exposed to risk from changes in that sector; if it is small, we are
less exposed to risk from that sector. If Rfact

i = 0, we say that the portfolio is neutral with
respect to sector i.

Another type of risk exposure is due to fluctations in the returns of the individual assets.
The idiosyncratic risk is given by

Rid =

n∑
i=1

σ2
i x

2
i ,

where σi > 0 are the standard deviations of the asset returns. (You can take the formula
above as a definition; you do not need to understand the statistical interpretation.)

We will choose the portfolio weights x so as to maximize r − λRid, which is called the
risk-adjusted return, subject to neutrality with respect to all sectors, i.e., Rfact = 0. Of course
we also have the normalization constraint 1Tx = 1. The parameter λ, which is positive, is
called the risk aversion parameter. The (known) data in this problem are µ ∈ Rn, F ∈ Rk×n,
σ = (σ1, . . . , σn) ∈ Rn, and λ ∈ R.

a) Explain how to find x, using methods from the course. You are welcome (even en-
couraged) to express your solution in terms of block matrices, formed from the given
data.

b) Using the data given in sector_neutral_portfolio_data.json, find the optimal port-
folio. Report the associated values of r (the return), and Rid (the idiosyncratic risk).
Verify that 1Tx = 1 (or very close) and Rfact = 0 (or very small).

Solution.

a) We define Σ ∈ Rn×n to be a diagonal matrix with Σii = σ2
i , so Rid = xTΣx. The

problem we are trying to solve is

maximize µTx− λxTΣx

subject to 1Tx = 1, Fx = 0
(1)

1

with variable x ∈ Rn. Maximizing an objective is equivalent to minimizing the negative
of the objective, so we can rewrite this as

minimize − µTx+ λxTΣx

subject to 1Tx = 1, Fx = 0

We introduce Lagrange multipliers κ ∈ R and ν ∈ Rk for the two constraints, and write
the Lagrangian of this problem as

L(x, ν, κ) = −µTx+ λxTΣx+ νT(Fx) + κ(1Tx− 1).

The optimality conditions are then given by

∇xL = −µ+ 2λΣx+ FTν + κ1 = 0, ∇νL = Fx = 0, ∇κL = 1Tx− 1 = 0,

which we can write in block matrix form as 2λΣ FT 1
F 0 0
1T 0 0

 x
ν
κ

 =

 µ
0
1

 .

To find the optimal x we solve this set of n+k+1 linear equations in n+k+1 variables.

Alternate method: Another method is to note that∥∥∥∥√λΣ1/2x− 1

2
√
λ
Σ−1/2µ

∥∥∥∥2 = λxTΣx− µTx+
1

4λ
µTΣ−1µ

and the last term is a constant, so minimzing the left-hand side is equivalent to mini-

mizing −µTx + λxTΣx. Then let A =
√
λΣ1/2, b = 1

2
√
λ
Σ−1/2µ, C =

[
1T

F

]
, d =

[
1
0

]
,

and we can minimize ∥Ax− b∥ subject to Cx = d using the general norm minimization
procedure.

b) Using the data provided we arrive at optimal values r = 26.71, and Rid = 133.6, with
the optimal objective value of the original problem being 13.34. The following Julia code
implements the method of part (a).

Note: Julia supports Unicode characters, so if you type something like \sigma then Tab,
Jupyter and Julia’s REPL will convert it to the Greek letter, in place of the Latin-spelled
sigma. But LATEX doesn’t support Unicode characters, so we Latinized the Greek letters
to print the code here.

using LinearAlgebra
using Plots
include("readclassjson.jl")
data = readclassjson("sector_neutral_portfolio_data.json")

n = data["n"]
k = data["k"]

2

lambda = data["lambda"]
sigma = data["sigmas"]
F = data["F"]
mu = data["mu"]

block matrix method
sigma = diagm(sigma.^2)
M = [2lambda*sigma F’ ones(n,1);

F zeros(k,k) zeros(k,1);
ones(1,n) zeros(1,k) 0]

v = [mu; zeros(k,1); 1]

@assert rank(M) == size(M, 1) == size(M, 2) == n + k + 1
y = M \ v
x = y[1:n]
@show r = mu’*x
@show Rid = lambda*x’*sigma*x
@show obj = r - Rid

completing the square method
A = sqrt(lambda) * diagm(sigma)
b = diagm(1 ./ sigma) * mu / (2*sqrt(lambda))
C = [ones(1, n); F]
d = [1; zeros(k, 1)]

G = [A’*A C’; C zeros(k+1,k+1)]
h = [A’*b; d]
@assert rank(G) == size(G, 1) == size(G, 2) == n + k + 1
w = G \ h
x = w[1:n]
@show r = mu’*x
@show Rid = x’*sigma*x
@show obj = r - lambda*Rid

9.1360. A simple population model. We consider a certain population of fish (say) each (yearly)
season. x(t) ∈ R3 will describe the population of fish at year t ∈ Z, as follows:

• x1(t) denotes the number of fish less than one year old

• x2(t) denotes the number of fish between one and two years old

• x3(t) denotes the number of fish between two and three years

(We will ignore the fact that these numbers are integers.) The population evolves from year t
to year t+ 1 as follows.

• The number of fish less than one year old in the next year (t + 1) is equal to the total
number of offspring born during the current year. Fish that are less than one year old

3

in the current year (t) bear no offspring. Fish that are between one and two years old
in the current year (t) bear an average of 2 offspring each. Fish that are between two
and three years old in the current year (t) bear an average of 1 offspring each.

• 40% of the fish less than one year old in the current year (t) die; the remaining 60% live
on to be between one and two years old in the next year (t+ 1).

• 30% of the one-to-two year old fish in the current year die, and 70% live on to be
two-to-three year old fish in the next year.

• All of the two-to-three year old fish in the current year die.

Express the population dynamics as an autonomous linear system with state x(t), i.e., in the
form x(t + 1) = Ax(t). Remark: this example is silly, but more sophisticated population
dynamics models are very useful and widely used.

Solution. We have that

x1(t+ 1) = 2x2(t) + x3(t),

x2(t+ 1) = 0.6x1(t),

x3(t+ 1) = 0.7x2(t).

Thus, we have that x(t+ 1) = Ax(t), where

A =

0.0 2.0 1.0
0.6 0.0 0.0
0.0 0.7 0.0

 .

9.1410. Invariance of the unit square. Consider the linear dynamical system ẋ = Ax with A ∈
R2×2. The unit square in R2 is defined by

S = { x | −1 ≤ x1 ≤ 1, − 1 ≤ x2 ≤ 1 }.

a) Find the exact conditions on A for which the unit square S is invariant under ẋ = Ax.
Give the conditions as explicitly as possible.

b) Consider the following statement: if the eigenvalues of A are real and negative, then S is
invariant under ẋ = Ax. Either show that this is true, or give an explicit counterexample.

Solution.

a) In order for the unit square to be an invariant set for the system ẋ = Ax, all flows should
be in going at the boundary of the unit square. In otherwords, we require that for all x
on the boundary, ⟨ẋ, n⟩ < 0, where n is the outward unit normal vector to the boundary
at point x. Suppose that [

ẋ1
ẋ2

]
=

[
a11 a12
a21 a22

] [
x1
x2

]
.

4

e1

e2

−e1

−e2

x1

x2

Figure 1: unit square and normal unit vectors at boundaries

The boundary of the unit square consists of four line segments. The condition ⟨ẋ, n⟩ < 0
along each line segment becomes:

x1 = −1, −1 ≤ x2 ≤ 1: in this region we have

⟨ẋ, n⟩ = ⟨
[
a11 a12
a21 a22

] [
x1
x2

]
,−e1⟩ = −a11x1 − a12x2.

Since x1 = −1 we require that a11 − a12x2 ≤ 0 for −1 ≤ x2 ≤ 1. However,
when −1 ≤ x2 ≤ 1, a11 − a12x2 is maximum for x2 = −sgn(a12) and therefore
a11 − a12x2 ≤ 0 if and only if a11 + a12sgn(a12) ≤ 0, or finally, a11 + |a12| ≤ 0.

x1 = 1, −1 ≤ x2 ≤ 1: here n = e1 and using the same reasoning we get the same
condition a11 + |a12| ≤ 0.

x2 = −1, −1 ≤ x1 ≤ 1: in this case we have n = −e2 and by similar arguments we
get a22 + |a21| ≤ 0.

x2 = 1, −1 ≤ x2 ≤ 1: here we reach the same condition as in the previous case, i.e.,
a22 + |a21| ≤ 0.

In summary the conditions for the unit square to invariant are:

a11 + |a12| ≤ 0, a22 + |a21| ≤ 0.

b) It is not true. A =

[
−1 2
0 −1

]
gives a simple counterexample.

5

9.1470. Optimal choice of initial temperature profile. We consider a thermal system described
by an n-element finite-element model. The elements are arranged in a line, with the temper-
ature of element i at time t denoted Ti(t). Temperature is measured in degrees Celsius above
ambient; negative Ti(t) corresponds to a temperature below ambient. The dynamics of the
system are described by

c1Ṫ1 = −a1T1 − b1(T1 − T2),

ciṪi = −aiTi − bi(Ti − Ti+1)− bi−1(Ti − Ti−1), i = 2, . . . , n− 1,

and
cnṪn = −anTn − bn−1(Tn − Tn−1).

where c ∈ Rn, a ∈ Rn, and b ∈ Rn−1 are given and are all positive.
We can interpret this model as follows. The parameter ci is the heat capacity of element

i, so ciṪi is the net heat flow into element i. The parameter ai gives the thermal conduc-
tance between element i and the environment, so aiTi is the heat flow from element i to the
environment (i.e., the direct heat loss from element i.) The parameter bi gives the thermal
conductance between element i and element i+1, so bi(Ti−Ti+1) is the heat flow from element
i to element i+ 1. Finally, bi−1(Ti − Ti−1) is the heat flow from element i to element i− 1.

The goal of this problem is to choose the initial temperature profile, T (0) ∈ Rn, so that
T (tdes) ≈ T des. Here, tdes ∈ R is a specific time when we want the temperature profile to
closely match T des ∈ Rn. We also wish to satisfy a constraint that ∥T (0)∥ should be not be
too large.

To formalize these requirements, we use the objective (1/
√
n)∥T (tdes) − T des∥ and the

constraint (1/
√
n)∥T (0)∥ ≤ Tmax. The first expression is the RMS temperature deviation,

at t = tdes, from the desired value, and the second is the RMS temperature deviation from
ambient at t = 0. Tmax is the (given) maximum inital RMS temperature value.

a) Explain how to find T (0) that minimizes the objective while satisfying the constraint.

b) Solve the problem instance with the values of n, c, a, b, tdes, T des and Tmax defined in
the file temp_prof_data.json.

Plot, on one graph, your T (0), T (tdes) and T des. Give the RMS temperature error
(1/

√
n)∥T (tdes)− T des∥, and the RMS value of initial temperature (1/

√
n)∥T (0)∥.

Solution.

a) We can express the temperature dynamics as Ṫ = AT , where A is a tridiagonal matrix
with

A11 = −1/c1(a1 + b1)

Aii = −1/ci(ai + bi + bi−1), i = 2, . . . , n,

Ai,i−1 = bi−1/ci, i = 2, . . . , n,

Ai,i+1 = bi/ci, i = 1, . . . , n− 1.

We have T (tdes) = et
desAT (0). Therefore we must solve the problem

minimize (1/n)∥etdesAT (0)− T des∥2

subject to (1/n)∥T (0)∥2 ≤ (Tmax)2.

6

We solve this by minimizing

∥etdesAT (0)− T des∥2 + ρ∥T (0)∥2,

and increasing ρ until (1/n)∥T (0)∥2 ≤ (Tmax)2 first holds (which will be with equality).

We mention one rather common error: simply obtaining the least-squares solution (with-
out regards for ∥T (0)∥, and then scaling this solution down so that the constraint is
satisfied. This method produces results that look pretty good, when plotted, but are in
fact not particularly good (in addition to just being wrong). This results in an RMS
temperature error that more than 60% higher than using the correct method.

b) The following code solves the problem in part (b).

using LinearAlgebra
using Plots

include("readclassjson.jl")

data = readclassjson("temp_prof_data.json")

Tdes = data["Tdes"]
c = data["c"]
tdes = data["tdes"]
k = data["k"]
b = data["b"]
a = data["a"]
Tmax = data["Tmax"]
n = data["n"]

n = Int(n)

A = zeros(n, n)
A[1,1] = -1/c[1] * (a[1] + b[1])
A[1,2] = b[1] / c[1]
A[n,n] = -1/c[n] * (a[n] + b[n-1])
A[n,n-1] = b[n-1] / c[n]

for i = 2:n-1
A[i,i] = -1/c[i] * (a[i] + b[i] + b[i-1])
A[i,i-1] = b[i-1] / c[i]
A[i,i+1] = b[i] / c[i]

end

B = exp(Matrix(A*tdes))
rho = 0.0

7

C = [B; sqrt(rho) * I]
d = [Tdes; zeros(n)]
T = C \ d

Using a while true loop
while true

if norm(T) / sqrt(n) <= Tmax
break

end
rho += 1e-6
C = [B; sqrt(rho) * I]
d = [Tdes; zeros(n)]
T = C \ d

end

p1 = plot(Tdes, label="Tdes")
plot!(p1, B*T, seriestype = :scatter, label="B*T")
plot!(p1, T, label="T", color="black")
xlabel!(p1, "x")
ylabel!(p1, "t")

println(norm(T) / sqrt(n))
println(norm(Tdes - B*T) / sqrt(n))

Figure 2 shows T des with a solid blue line, T (tdes) with a dashed red line and T (0) with
a dash-dotted black line.

We have (1/
√
n)∥T (tdes)− T des∥ = 0.0457, and, as expected, (1/

√
n)∥T (0)∥ = 2.50.

0 20 40 60 80 100
−6

−4

−2

0

2

4

6

8

T

i

Figure 2: T des (solid blue), T (tdes) (dashed red) and T (0) (dash-dotted black).

8

10.1500. Properties of the matrix exponential.

a) Show that eA+B = eAeB if A and B commute, i.e., AB = BA.

b) Carefully show that d
dte

At = AeAt = eAtA.

Solution.

a) We will show that if A and B commute then eAeB = eA+B. We begin by writing the
expressions for eA and eB

eA = I +A+
A2

2!
+

A3

3!
+ · · ·

eB = I +B +
B2

2!
+

B3

3!
+ · · ·

Now we multiply both expressions and get

eAeB = I +A+B +AB +
A2

2!
+

B2

2!
+

A3

3!
+

A2B

2!
+

AB2

2!
+

B3

3!
+ · · ·

= I +A+B +
A2 + 2AB +B2

2!
+

A3 + 3A2B + 3AB2 +B3

3!
+ · · ·

Now we note that, if A and B commute, we are able to write things such as (A+B)2 =
A2 + 2AB +B2. So, if A and B commute we can finally write

eAeB = I + (A+B) +
(A+B)2

2!
+

(A+B)3

3!
+ · · · = eA+B

b) It suffices to note that A commute with itself. Then one can write

deAt

dt
= A+A2t+

A3t2

2!
+ · · ·

= A(I +At+
(At)2

2!
+ · · ·)

= (I +At+
(At)2

2!
+ · · ·)A

= AeAt = eAtA

11.1790. Squareroot and logarithm of a (diagonalizable) matrix. Suppose that A ∈ Rn×n is
diagonalizable. Therefore, an invertible matrix T ∈ Cn×n and diagonal matrix Λ ∈ Cn×n exist
such that A = TΛT−1. Let Λ = diag(λ1, . . . , λn).

a) We say B ∈ Rn×n is a squareroot of A if B2 = A. Let µi satisfy µ2
i = λi. Show that

B = T diag(µ1, . . . , µn)T
−1 is a squareroot of A. A squareroot is sometimes denoted A1/2

(but note that there are in general many squareroots of a matrix). When λi are real and
nonnegative, it is conventional to take µi =

√
λi (i.e., the nonnegative squareroot), so

in this case A1/2 is unambiguous.

b) We say B is a logarithm of A if eB = A, and we write B = logA. Following the idea of
part a, find an expression for a logarithm of A (which you can assume is invertible). Is
the logarithm unique? What if we insist on B being real?

9

Solution.

a) We have

B2 = T diag(µ1, . . . , µn)T
−1T diag(µ1, . . . , µn)T

−1

= T diag(µ1, . . . , µn) diag(µ1, . . . , µn)T
−1

= T diag(µ2
1, . . . , µ

2
n)T

−1

= TΛT−1

= A

and we are done. Note that using this method we can get up to 2n different squareroots
for A ∈ Rn×n (because of the ambiguity in the sign of µi = ±

√
λi). However, it should

be noted that not all squareroots are given this way. For example, consider

A =

[
0 0
0 0

]
.

Using the method described in this problem we get B =

[
0 0
0 0

]
. But

B̃ =

[
0 1
0 0

]
is also a squareroot of A because

B̃2 =

[
0 1
0 0

] [
0 1
0 0

]
=

[
0 0
0 0

]
= A.

b) Define the logarithm of A as

B = logA = T diag(log λ1, . . . , log λn)T
−1. (2)

Since A is invertible λi ̸= 0 and log λi is defined for i = 1, . . . , n. Now we check that
eB = A:

eB = T diag(elog λ1 , . . . , elog λn)T−1

= T diag(λ1, . . . , λn)T
−1

= A.

A complex number λ = a+ jb is has infinitely many logarithms

log λ = log
√
a2 + b2 + j(arg(a+ jb) + 2πk)

where k is any integer. In other words, the complex part of the logarithm is only
determined up to an integer multiple of 2π. Therefore in general we have infinitely
many choices for the log λi’s in (2) and logA is non-unique (even for the case where A

10

is a 1 × 1 matrix!). The choice of B = logA is not unique even if we insist on B being
real. For example consider

A =

[
1 0
0 1

]
.

Using the method described we get

B = logA =

[
0 2kπ

−2kπ 0

]
, k = ±1,±2, . . .

so although A and B are real matrices, the choice of B = logA is not unique. (For
scalars, there is only one real logarithm of any positive number.)

15.2380. Recovering an ellipsoid from boundary points. You are given a set of vectors x(1), . . . , x(N) ∈
Rn that are thought to lie on or near the surface of an ellipsoid centered at the origin, which
we represent as

E = {x ∈ Rn | xTAx = 1},

where A = AT ∈ Rn×n ≥ 0. Your job is to recover, at least approximately, the matrix A, given
the observed data x(1), . . . , x(N). Explain your approach to this problem, and then carry it out
on the data given in the mfile ellip_bdry_data.json. Be sure to explain how you check that
the ellipsoid you find is reasonably consistent with the given data, and also that the matrix A
you find does, in fact, correspond to an ellipsoid. To simplify the explanation, you can give
it for the case n = 4 (which is the dimension of the given data). But it should be clear from
your discussion how it works in general.

Solution. This is another one of those sneaky least squares problems: all you need to do is
to twist it around into the right form. We are looking for a matrix A ∈ R4×4 that is symmetric
and satisfies

x(k)TAx(k) ≈ 1, k = 1, . . . , N.

(We’re taking the advice that suggests we consider the case n = 4 in our explanation!) So,
we’ll find the symmetric matrix that minimizes the mean square error,

(1/N)
N∑
k=1

(
x(k)TAx(k) − 1

)2
.

Staring at this equation long enough reveals that the expression x(k)TAx(k) is linear in the
variables Aij , so we can use least-squares to estimate A. First we have to deal with the fact
that A is symmetric. Let’s choose as free variables for A, the upper triangular part, i.e., our
variables to be determined are Aij , for 1 ≤ i ≤ j ≤ 4. (We’ll recover the lower triangular part

11

of A using Aji = Aij .) So our variable (for the n = 4 case) will be the 10 vector

z =

A11

A22

A33

A44

A12

A13

A14

A23

A24

A34

.

(Of course you can choose other ways to write the free variables in A as a vector.) Now let’s
write

x(k)TAx(k) =

n∑
i,j=1

Aijx
(k)
i x

(k)
j =

n∑
i=1

Aii

(
x
(k)
i

)2
+ 2

∑
1≤i<j≤n

Aijx
(k)
i x

(k)
j .

We can write this as[
(x

(k)
1)2 (x

(k)
2)2 (x

(k)
3)2 (x

(k)
4)2 2x

(k)
1 x

(k)
2 2x

(k)
1 x

(k)
3 2x

(k)
1 x

(k)
4 2x

(k)
2 x

(k)
3 2x

(k)
2 x

(k)
4 2x

(k)
3 x

(k)
4

]
z

(whew!). That means we can express our problem as finding z that minimizes ∥Fz−1∥, where
1 is the vector of all ones, and F is the N × 10 matrix whose kth row is given above. We can
then solve for the least squares approximation of z. This is done in the Julia code below.

using LinearAlgebra

include("readclassjson.jl")

data = readclassjson("ellip_bdry_data.json")

X = data["X"]

N = 100

F = zeros(N, 10)
Y = ones(N)

for i = 1:N
F[i,1] = X[1,i]^2
F[i,2] = X[2,i]^2
F[i,3] = X[3,i]^2
F[i,4] = X[4,i]^2
F[i,5] = 2*X[1,i]*X[2,i]
F[i,6] = 2*X[1,i]*X[3,i]
F[i,7] = 2*X[1,i]*X[4,i]

12

F[i,8] = 2*X[2,i]*X[3,i]
F[i,9] = 2*X[2,i]*X[4,i]
F[i,10] = 2*X[3,i]*X[4,i]

end

a_ls = F \ Y

A_ls = [a_ls[1] a_ls[5] a_ls[6] a_ls[7];
a_ls[5] a_ls[2] a_ls[8] a_ls[9];
a_ls[6] a_ls[8] a_ls[3] a_ls[10];
a_ls[7] a_ls[9] a_ls[10] a_ls[4]]

temp = (X’ * A_ls) * X
residual = [temp[i,i] - 1 for i = 1:N]
error = norm(residual)

percent_error = 100 * error / sqrt(N)

println("Percent error: ", percent_error)

This yields

Als =

1.44 0.05 −2.87 1.61
0.05 0.41 −1.38 0.90
−2.87 −1.38 16.14 −11.84
1.61 0.90 −11.84 9.31

 .

To check the matrix A we estimate, we simply check that x(k)TAx(k) ≈ 1, which is the same as
checking that Fz ≈ 1. This gives us a percent error of 8.36%. To check that it corresponds to
an ellipsoid, we check that A is positive definite, for example by finding its smallest eigenvalue,
0.047.

13

