EE263 Homework 6 Solutions
Fall 2023

3.660. Some true/false questions. Determine if the following statements are true or false. No
justification or discussion is needed for your answers. What we mean by “true” is that the
statement is true for all values of the matrices and vectors given. You can’t assume anything
about the dimensions of the matrices (unless it’s explicitly stated), but you can assume that
the dimensions are such that all expressions make sense. For example, the statement “A+ B =
B + A” is true, because no matter what the dimensions of A and B (which must, however,
be the same), and no matter what values A and B have, the statement holds. As another
example, the statement A2 = A is false, because there are (square) matrices for which this
doesn’t hold. (There are also matrices for which it does hold, e.g., an identity matrix. But

that doesn’t make the statement true.)
a) If 27 Az = 2T Bz for all =, then A = B.

)

b) If 27 Ay = 27 By for all 2 and y, then A = B.
)
)

c) If ||Az| = ||Bz|| for all x, then A = B.
d) If A and B are both stable, then A + B is also stable.
. |2a 3b| . a b .
e) The matrix [ i 5 d] is equal to A [c d] B for some matrices A and B.

f) If R is upper triangular and orthogonal, then R is diagonal.
g) If A is square, then there always exists a matrix C such that AC = CA”.

h) If z,y € R™ then the n x n matrix zy’ is diagonalizable.

Solution.

a) False. Consider

1 2 11
A_[O J and B—L 1].

Then, we have that
2T Az = 22 + 2z129 + 23 = 2T Bz

for all =, but A # B.

b) True. For x = e; and y = e;, we have that
ai;j = el Aej = el Bej = bjj.

Since this holds for all ¢ and j, we have that A = B.



)

False. Consider
10 01
A= [O 1} B= [1 O} )

[ Az = [lz|| = [| Bz||

Then, we have that

for all z, but A # B.

False. Consider

-1 2 -1 0
A[O _J and B[2 _1].

Then, —1 is the only eigenvalue of A, and also the only eigenvalue of B. Therefore, A

and B are both stable. However, the eigenvalues of A + B are —4 and 0, so A + B is
not stable.

False. Suppose a = b =c¢ =d = 1. Then, we have that

2a 3b a b
rank(Lc 5d]):2 and rank<[c d])zl.

For any A and B, we have that

rank(4 [0 0] ) < ran([2 0] ) 1.

Thus, it is impossible to find matrices A and B such that the matrix [Qa Sb} is equal

4¢c  5d
a b
to A [c d] B.

True. Suppose R € R™*™ is upper triangular and orthogonal. We will argue by induction
on n that R is diagonal. If n = 1, then any matrix is diagonal, so the claim is trivially
true. Now suppose n > 2. The norm of the first column of R is equal to 1:

lr1]? = 1% = 1.
The inner product of the first column of R with any other column of R is
T?Tj =Truriy = 0.

Since r11 # 0, this implies that r1; = 0 for all j = 2,...,n. Thus, R has the form
- T11 0
R= [ ! 322] .

Since R is upper triangular, it is clear that Rgy € R("—1)x(
Moreover, Roo is orthogonal because

RTR:[HmrP 0 }:I:[l 0].

n=1) is upper triangular.

0  RI,Ry 0 I

The induction hypothesis implies that Rao is diagonal, and hence that R is diagonal. By
induction, this proves the claim for all n.



g) True. The matrix C' = 0 always satisfies the condition.

h) False. For z = (1,0) and y = (0, 1), the matrix
7 [0 T o1
Y = lol[1] Tlo o

8.160. Designing an equalizer for backwards-compatible wireless transceivers. You want
to design the equalizer for a new line of wireless handheld transceivers (more commonly called
walkie-talkies). The transmitter for the new line of transceivers has already been designed
(and cannot be changed) — if the input signal is x € R", then the transmitted signal is
Yy = Apnewx € R™, where Apew € R™*™ is known. An equalizer for Apey is a matrix B € R™*™
such that By = x for every x € R".

The new line of transceivers will replace an older model. Given an input signal x € R"”,
the old line of transceivers transmit a signal yoq = Aoz € R™, where Agq € R™*" is
known. In addition to providing exact equalization for the new line of transceivers, you want
your equalizer to be able to at least partially equalize signals transmitted using the old line
of transceivers. In other words, to the extent that it is possible, you want the new line of
transceivers to be backwards compatible with the old line of transceivers.

is not diagonalizable.

a) Explain how to find an equalizer B that minimizes

J = ||BAqa — |7 = ZZ(BAold - D
i=1 j=1

among all B that exactly equalize Aew. Such a B is an exact equalizer for Ayew, and an
approximate equalizer for Aqq. State any assumptions that are needed for your method
to work.

b) The file backwards_compatible_transceiver_data.json defines the following vari-
ables.

e Anew, the m X n matrix that describes the transmitter used in the new line of
transceivers

e Aold, the m x n matrix that describes the transmitter used in the old line of
transceivers

e x, a vector of length n that serves as an example input signal
Apply your method to this example data. Report the optimal value of J. The pseudoin-

verse Alew is another exact equalizer for A,ew. Compare the optimal value of .J, and
the value of J achieved by ALGW.

¢) The example signal = defined in the data file is a binary signal. Form the signal yoq =
Aglgx transmitted by the old line of transceivers, and construct an estimate of x by



equalizing y.1q using B, and then rounding the result to a binary signal. More concretely,
compute the estimate £ € R", where

5= 1 (Byold) > 2>
! 0 otherwise.

Report the bit error rate of your estimate, which is defined as

1 n
= A(wi # &),
n
1=1
where I(x; # ;) is an indicator function:

I 7& jji?
0 otherwise.

Similarly, report the bit error rate if Alew is used as the equalizer.

Solution.

a) Write the equalizer B € R™*™ in terms of its rows:

We require that B be an exact equalizer for Ayew: that is, BAnew = I. We can express
this condition in terms of the rows of B as

Al b= i=1,...,n,

new

where e; denotes the ith standard basis vector in R”. Similarly, we can write our objective
in terms of the rows of B:

J=> (BAga—1I le BAga — D = Z”Aold —eil®.

i=1 j=1

Thus, we want to solve the following optimization problem.

o . . 2
minimize 3 A qbi — eill
subject to AT b; = e; i=1,...,n

This problem is separable in the rows of B, allowing us to decompose it into n vector
optimization problems:
minimize [|AT b; — e;|?
inimize [|ATyb: — i

subject to Al b; = e;



for : = 1,...,n. Each of these problems is a linearly constrained minimum-norm prob-

lem; the solution of such a problem can be obtained by solving the following system of

equations:

|:AoldA;r1d Anew] |:bz:| _ [Aoldei
AT 0 )\Z - €;

new

], 1=1,...,n.

This method works as long as each of these optimization problems is feasible — that is,
as long as we can find a matrix B € R™*™ such that

BApew = 1.

In other words, we require that A,ey be skinny and full rank (or, equivalently, left
invertible). In order for the KKT system to have a unique solution, we require that
Al be fat and full rank, and
AT
old
2

new

be skinny and full rank. Equivalently, we require that Ayew be skinny and full rank, and
[Aold Anew] be fat and full rank.

The optimal value of J is 3.2361; in comparison, the value of J achieved by A;rlew is
8.0901, which is significantly higher.

The bit error rate using the equalizer B is 0.0333, while the bit error rate using Al oy is
0.1000. Thus, we see that B has a much lower bit error rate than A;rlew.

using LinearAlgebra

include("readclassjson.jl")

data = readclassjson("backwards_compatible_transceiver_data.json")

A_new = data["Anew"]
A_old = data["Aold"]
x = data["x"]

block_matrix = [2*A_old*A_old’ A_new; A_new’ zeros(30, 30)]

B

3]
1]

for

end

zeros (30, 50)
1(30)

i in 1:30
Bl[i,:] = (block_matrix\[(2*A_old*E[i,:])? E[i,:]1°]’)[1:50]



B

BxA_new

norm(B*A_old - E)~2

A_pinv = inv(A_new’*A_new)*A_new’
norm(A_pinvxA_old - E)~2

y_old = A_oldx*x

x_est = B*xy_old
x_est_pinv = A_pinv*y_old

for i in 1:30
if x_est[i]>0.5

x_est[i] = 1
else
x_est[i] = 0
end
end
X_est

for i in 1:30
if x_est_pinv[i]>0.5
x_est_pinv[i] = 1
else
x_est_pinv[i] = 0
end
end

x_est_pinv

function get_bit_rate(x_est, x, n)
wrong = O
for i in 1:n
if x_est[i] !'= x[i]
wrong+=1
end
end
return wrong/n
end



get_bit_rate(x_est, x, 30)

get_bit_rate(x_est_pinv, x, 30)

15.2150. Norm expressions for quadratic forms. Let f(z) = 2T Az (with A = AT € R™") be a
quadratic form.

a) Show that f is positive semidefinite (i.e., A > 0) if and only if it can be expressed as

f(z) = ||Fz|? for some matrix F' € R¥*", Explain how to find such an F' (when A > 0).
What is the size of the smallest such F' (i.e., how small can k be)?

b) Show that f can be expressed as a difference of squared norms, in the form f(x) =

|Fz||? — ||Gx||?, for some appropriate matrices F' and G. How small can the sizes of F
and G be?

Solution.

a) We know that the norm expression f(x) = ||Fxz||? is a positive semidefinite quadratic

form simply because f(x) > 0 for all  and f(z) = 2" Az with A = FTF > 0. In
this problem we will show the converse, i.e., any positive semidefinite quadratic form
f(x) = 27 Az can be written as a norm expression f(x) = || Fz||>. Suppose the eigenvalue
decomposition of A > 0is QAQT, with QTQ = I and A = diag(\y, ..., \,) where \; are
the cigenvalues of A. Since \; > 0 (because A > 0) then AY2 = diag(vV/)1,...,VAn)
is a real matrix. Let F = A/2QT € R™". Then we have |Fz|> = 2"FTFz =
QAY2AY2QT = 2T Az = f(z). To get smallest F suppose that rank(A) = r. Therefore,
A € R™ " has exactly r nonzero eigenvalues \i,..., A,. Suppose Ay = diag(A1,..., \).
Hence, the eigenvalue decomposition of A can be written as

A 0y (1 QT
A= + rx(n—r) :| |: 1 :|
[Ql Q2 ] 0(n—7")><7" O(n—r)x(n—r) Q-2r
and as a result A = Q1A+Q1T where @1 € R™*". Now we can take F' = AiﬂQlT e R™",
Therefore, k can be as small as r, i.e., k = rank(r). Note that k cannot be any smaller
than rank(A) because A = FTF implies that rank(A) < k.

In general, a quadratic form need not to be positive semidefinite. In this problem we
show that any quadratic form can be decomposed into its “positive” and ‘negative”
parts. In other words, we can write f(z) as the difference of two norm expressions, i.e.,

f(x) = ||[Fz|? — ||Gz||?>. Suppose A has n; positive eigenvalues A1, ..., \n,, no negative
eigenvalues A\p,41,..., Ap +ny, and therefore n —ny — ng zero eigenvalues. Let
Ay =diag(A1, ..., Any ), A =diag(—Apy+1s -+ s —Angtng)-
The eigenvalue decomposition of A can be written as
A+ 0n1 Xng Onlx(n—nl—nz) Q—lr
A= [Ql QZ QS] 0n2 Xni —A_ Onzx(nfnlfng) Q-Qr
O(n—n;— O(n—n;— O(n—ny— . Q3
(n—m1—n2)Xny (n—n1—n2)Xn2 (n—m1—ng2)X(n—nm1—ng2) 3
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s0 A= Q1A QT —QTA_Qy. Now simply take F = AY2QT € Rm*m and G = AY2QT €
R™2%"_ Tt is easy to verify that A = FTF —GTG and therefore 27 Az = || Fz||? — || Gz|?.
In fact, this method gives the smallest sizes for F' and G.

15.2790. Ellipsoids.

a)

Write a function that, given a a 2 x 2 real, positive definite symmetric matrix A > 0,
plots the ellipse
E:{ZL‘ER2|{L‘TA:L':1}

Make sure that your plot is shown so that horizontal and vertical lengths are the same,
that is, with aspect ratio 1. Turn in your code.

Julia hint: use the following to draw a plot with correct aspect ratio.
Using Plots; plot(x, y, aspect_ratio=:equal)

Use your code to plot the ellipsoid for the matrix
10

+=[a 2]

Use your code to plot the ellipsoid for the matrix

02 —0.1
A= [—0.1 0.4 }

On your plot, also show semiaxes.

Consider an estimation problem, where we have three sensors, define by b; € R? for
1 =1,2,3. We measure y; = b;rw. The vectors b; are

0.89 0.45 ~0.71
bl_[0.45] b2_[0.89] b3_[ 0.71 ]

Plot the set of 2 € R? for which ||y|| < 1. On your plot, show also the b; (that is, plot a
line from the origin to b;).

Solution.

a)

The following function plots the ellipse

using Plots
using LinearAlgebra

function ellipse(A)
D, V = eigen(A)
B =V’ % diagm(1 ./sqrt.(D)) * V
xy = [Bx[cos(t), sin(t)] for t in range(0,2pi,length=100)]
x = [a[1] for a in xyl



y = [a[2] for a in xy]
plot(x, y, aspect_ratio=:equal)
end

function plotaxes(p, A)
for x in getaxes(A)
plot!(p, [0, x[11]1, [0,x[2]1)
end
end

function getaxes(A)

D, V = eigen(A)

n = size(A,2)

return [V[:,i] / sqrt(D[i]) for i=1:n]
end

function partb()
A=110; 0 2]
p = ellipse(Ad)
plotaxes(p, A)
savefig(p, "partb.png")
display(p)

end

function partc()
A =1T00.2 -0.1; -0.10.4]
p = ellipse(A)
plotaxes(p, A)
savefig(p, "partc.png")
display(p)

end

function partd()
A= 1[0.89 0.45
0.45 0.89
-0.71 0.71]
p=ellipse(A’*A)
for x in eachrow(A)
plot!(p, [0, x[11]1, [0,x[2]1)
end
savefig(p, "partd.png")
display (p)
end



partb()
partc()
partd()

b) The plot is below.
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c¢) The plot is below.

15 F
1.0
05

0.0 F

-10 |

¥yl
[
— 3

d) The plot is below.
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16.2980. Smoothing. We have a discrete-time signal given by x € R™. We get to measure y € R",
given by

h

yizzck$i+k+wi fori=1,...,n
k=—h

where w; is noise. Here we use the convention that x; = 0 for ¢ < 1 or ¢ > n. That is, y is ¢
convolved with = plus noise. In applications, very often the effect of convolution with c is to
smooth or blur x, and we would like to undo this.

The file regl_data. json contains ¢, w and .

a)

b)

In Julia, construct the n x n matrix such that y = Ax + w. Plot the singular values oy,
against k.

Plot the first 6 right singular vectors of A (i.e. plot Vj; against i for j = 1,...,6.) Explain
what you see.

Find and plot the least-squares estimate of & given ymeas, computng ymeas using ¢, x and
w given in regl_data. json. Explain what happens.

Many of the singular values of A are very small; this means that the measurement in the
directions of the corresponding right singular vectors is being swamped by the noise.

If we believe these components are small, we can remove them from our estimate of =
altogether by truncating the SVD of A and using the truncated SVD to compute the
estimate. This is called the truncated SVD reqularization of least-squares.

Supppse we decided only to keep the first r components. Then truncate by letting 1%4
and U be the first r columns of V' and U, and letting ¥ be the top-left r x r submatrix
of 3. Then we can construct an estimator that ignores the noise components by

Aest = VEIUT

and set

Test = Aest Ymeas

For values of r in 5,10, 15,30, 50, compute and plot the corresponding estimates of z.
Explain what you see.

For each r between 1 and 35, compute the norm of the error
|2 — Test |

Plot this against r. Explain what you see.

Pick the ‘best’ r and plot the corresponding estimate.

Another approach is to use Tychonov regularization. Find and plot the vector z,,, € R"
that minimizes the function
2 2
Az =yl + pll=",

where p > 0 is the regularization parameter. Pick a value of u that gives a good estimate,
in your opinion.

11



h) The regularized solution is a linear function of y, so it can be expressed as 2yeg = By
where B € R™*". Express the SVD of B in terms of the SVD of A. To be more specific,

let
n
B =Y &b}
i=1
denote the SVD of B. Express &;, u;, U;, fori =1,... n,intermsof o;, u;, v;, i =1,...,n

(and, possibly, ). Recall the convention that 61 > --- > &,,.
i) Find the norm of B. Give your answer in terms of the SVD of A (and p).

j) Find the worst-case relative inversion error, defined as

|ABy —y||
max ——————.
vr0 |yl

Give your answer in terms of the SVD of A (and p).

Solution.

a) A can be constructed from c easily. The singular values of A is as follows.

Singular Values of A
1 T T T

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

100 120 140 160 180 200

Note that they decay very fast, and some are extremely small. In particular, this shows
that this estimation problem will be extremely sensitive to noise and numerical errors in
the measurement, since the condition number is large.

b) The first six singular vectors are below.

12



vl of A v2 of A

0 0.1
-0.05 0
-0.1 -0.1
50 100 150 200 0 50 100 150 200
v3 of A v4 of A
0.1 0.1
0 0
-0.1 -0.1
0 50 100 150 200 0 50 100 150 200
v5 of A v6 of A
0.1 0.1
0 0
-0.1 -0.1
0 50 100 150 200 0 50 100 150 200

The matrix A is a smoother, or low-pass filter. So we should expect that it has a gain that
depends on the ‘frequency’ of the input. The plot show that this intuition is correct; the
input is broken down into different frequency components by the matrix of right singular
vectors V, each is scaled by the corresponding singular value, and then the output is
constructed. The left singular vectors look similar. Since its a low-pass filter, the larger
singular values correspond to low frequencies.

Below are the plots of &, Ymeqs, and xys.
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Our estimate is extremely badly corrupted by the noise, because of the high condition
number of A; the estimation ellipsoid is long and thin, and we have extremely poor
estimates of the components of x corresponding to small singular values of A. These are
the high frequency components. They are multiplied by the small singular values, and
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so are swamped by the noise.

d) The plots below show the estimates obtained with different values of 7.

xandx__ whenr=5 xand x__ whenr=10
est est
10 10
0 0
-5 -5
50 100 150 200 50 100 150 200
xand x__ whenr=15 xand x__ whenr =30
est est
10 10
0 0
-5 -5
50 100 150 200 50 100 150 200
xand x__ whenr=50
est
10
5
0
-5

50 100 150 200

The regularization ignores components of the frequency corresponding to right singular
vectors v when k > r. These are the higher-frequency and more noise components.
Removing them is equivalent to making the assumption that that component is actually
zero, rather than using the measured data.

The estimate is poor for r very small, because much of the signal is being ignored by
the regularization. It is also poor at large r, when very noisy measurements of the
high-frequency components are used.

e) The error is plotted below.
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Norm of the Error against r
35 T T

30

25

20

0 5 10 15 20 25 30 35

The graph shows the error phenomena described in part (d). Using too few singular
values means we lose too much information, using too many means we use information
which is very badly corrupted by noise.

f) From the above graph, we find the number of singular values which results in the mini-
mum error is 28.
The corresponding estimate is below.

The best truncated SVD estimate when r = 28
9 T T T T T T T T

X X

8 . : est [

-1 i 1\/ i i

1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

g) One of good values of p can be chosen as p = 0.05 by computing errors for various values
of p. Below is the estimate corresponding to p = 0.05.
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Tychonov regularization when mu = 0.05
10 T T T T T

_2 i i i i i i i i i

0 20 40 60 80 100 120 140 160 180 200

h) The regularized least-squares solution is given by x (A A+ pl ) - ATy, and thus

ts(u) =

B = (ATA+pul)
= ((w=v")usvT+ MI)_l sy’

(vsuTusvT + MI) LvsuT

(V (22 +pu) VD) ysoT

= (v +pn VT vEoT

= V(S +pul) SUT

— Vdiag (Ug"jr u) UT.

This is almost the SVD of B, except for one detail: the numbers

g;
a? +u
aren’t necessarily ordered from largest to smallest. Thus we have
0; = ;M Ui = V[, Vi = U],
%hy T H

where the notation z[; means the ith largest element of . (We accepted all sorts of
descriptions of this!) One common misconception was that the numbers
0
O'Z-Q + u
were simply in reverse order, so all that had to be done was to reverse the ordering.

That isn’t true; just sketch the function /(0% + p) as a function of p to see that it is
not always decreasing. (It increases first, then decreases.)
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i) The norm of B is its largest singular value, i.e.,

0;

HBH = max ————.
i O +u

j) The worst-case relative inversion error is the matrix norm of AB — I:
AB—1 = USVIV(S4+pus ) U7 -1
— US(S+p= ) UT -1
= U((I+pm) " -1)UT

. 1 T

7

= —Udiag <U2i M) Ut

This is the SVD of AB — I (to within reordering). Its largest singular value, i.e., the
norm of AB — I, is given by

i
HAB_[”:O_2+ .
n T M

Note that we had to absorb the negative sign in the lefthand orthogonal matrix; one

common error was to keep the negative sign in the norm. Obviously that couldn’t be
right because norms are always nonnegative!
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