
EE263 Homework 6 Solutions
Fall 2023

3.660. Some true/false questions. Determine if the following statements are true or false. No
justification or discussion is needed for your answers. What we mean by “true” is that the
statement is true for all values of the matrices and vectors given. You can’t assume anything
about the dimensions of the matrices (unless it’s explicitly stated), but you can assume that
the dimensions are such that all expressions make sense. For example, the statement “A+B =
B + A” is true, because no matter what the dimensions of A and B (which must, however,
be the same), and no matter what values A and B have, the statement holds. As another
example, the statement A2 = A is false, because there are (square) matrices for which this
doesn’t hold. (There are also matrices for which it does hold, e.g., an identity matrix. But
that doesn’t make the statement true.)

a) If xTAx = xTBx for all x, then A = B.

b) If xTAy = xTBy for all x and y, then A = B.

c) If ∥Ax∥ = ∥Bx∥ for all x, then A = B.

d) If A and B are both stable, then A+B is also stable.

e) The matrix
[
2a 3b
4c 5d

]
is equal to A

[
a b
c d

]
B for some matrices A and B.

f) If R is upper triangular and orthogonal, then R is diagonal.

g) If A is square, then there always exists a matrix C such that AC = CAT .

h) If x, y ∈ Rn then the n× n matrix xyT is diagonalizable.

Solution.

a) False. Consider

A =

[
1 2
0 1

]
and B =

[
1 1
1 1

]
.

Then, we have that
xTAx = x21 + 2x1x2 + x22 = xTBx

for all x, but A ̸= B.

b) True. For x = ei and y = ej , we have that

aij = eTi Aej = eTi Bej = bij .

Since this holds for all i and j, we have that A = B.
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c) False. Consider

A =

[
1 0
0 1

]
B =

[
0 1
1 0

]
.

Then, we have that
∥Ax∥ = ∥x∥ = ∥Bx∥

for all x, but A ̸= B.

d) False. Consider

A =

[
−1 2
0 −1

]
and B =

[
−1 0
2 −1

]
.

Then, −1 is the only eigenvalue of A, and also the only eigenvalue of B. Therefore, A
and B are both stable. However, the eigenvalues of A + B are −4 and 0, so A + B is
not stable.

e) False. Suppose a = b = c = d = 1. Then, we have that

rank

([
2a 3b
4c 5d

])
= 2 and rank

([
a b
c d

])
= 1.

For any A and B, we have that

rank

(
A

[
a b
c d

]
B

)
≤ rank

([
a b
c d

])
= 1.

Thus, it is impossible to find matrices A and B such that the matrix
[
2a 3b
4c 5d

]
is equal

to A

[
a b
c d

]
B.

f) True. Suppose R ∈ Rn×n is upper triangular and orthogonal. We will argue by induction
on n that R is diagonal. If n = 1, then any matrix is diagonal, so the claim is trivially
true. Now suppose n ≥ 2. The norm of the first column of R is equal to 1:

∥r1∥2 = r211 = 1.

The inner product of the first column of R with any other column of R is

rT1 rj = r11r1j = 0.

Since r11 ̸= 0, this implies that r1j = 0 for all j = 2, . . . , n. Thus, R has the form

R =

[
r11 0
0 R22

]
.

Since R is upper triangular, it is clear that R22 ∈ R(n−1)×(n−1) is upper triangular.
Moreover, R22 is orthogonal because

RTR =

[
∥r11∥2 0

0 RT
22R22

]
= I =

[
1 0
0 I

]
.

The induction hypothesis implies that R22 is diagonal, and hence that R is diagonal. By
induction, this proves the claim for all n.
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g) True. The matrix C = 0 always satisfies the condition.

h) False. For x = (1, 0) and y = (0, 1), the matrix

xyT =

[
1
0

] [
0
1

]T
=

[
0 1
0 0

]
is not diagonalizable.

8.160. Designing an equalizer for backwards-compatible wireless transceivers. You want
to design the equalizer for a new line of wireless handheld transceivers (more commonly called
walkie-talkies). The transmitter for the new line of transceivers has already been designed
(and cannot be changed) – if the input signal is x ∈ Rn, then the transmitted signal is
y = Anewx ∈ Rm, where Anew ∈ Rm×n is known. An equalizer for Anew is a matrix B ∈ Rn×m

such that By = x for every x ∈ Rn.
The new line of transceivers will replace an older model. Given an input signal x ∈ Rn,

the old line of transceivers transmit a signal yold = Aoldx ∈ Rm, where Aold ∈ Rm×n is
known. In addition to providing exact equalization for the new line of transceivers, you want
your equalizer to be able to at least partially equalize signals transmitted using the old line
of transceivers. In other words, to the extent that it is possible, you want the new line of
transceivers to be backwards compatible with the old line of transceivers.

a) Explain how to find an equalizer B that minimizes

J = ∥BAold − I∥2F =
n∑

i=1

n∑
j=1

(BAold − I)2ij

among all B that exactly equalize Anew. Such a B is an exact equalizer for Anew, and an
approximate equalizer for Aold. State any assumptions that are needed for your method
to work.

b) The file backwards_compatible_transceiver_data.json defines the following vari-
ables.

• Anew, the m × n matrix that describes the transmitter used in the new line of
transceivers

• Aold, the m × n matrix that describes the transmitter used in the old line of
transceivers

• x, a vector of length n that serves as an example input signal

Apply your method to this example data. Report the optimal value of J . The pseudoin-
verse A†

new is another exact equalizer for Anew. Compare the optimal value of J , and
the value of J achieved by A†

new.

c) The example signal x defined in the data file is a binary signal. Form the signal yold =
Aoldx transmitted by the old line of transceivers, and construct an estimate of x by
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equalizing yold using B, and then rounding the result to a binary signal. More concretely,
compute the estimate x̂ ∈ Rn, where

x̂i =

{
1 (Byold)i >

1
2 ,

0 otherwise.

Report the bit error rate of your estimate, which is defined as

1

n

n∑
i=1

I(xi ̸= x̂i),

where I(xi ̸= x̂i) is an indicator function:

I(xi ̸= x̂i) =

{
1 xi ̸= x̂i,

0 otherwise.

Similarly, report the bit error rate if A†
new is used as the equalizer.

Solution.

a) Write the equalizer B ∈ Rn×m in terms of its rows:

B =

b
T
1
...
bTn

 .

We require that B be an exact equalizer for Anew: that is, BAnew = I. We can express
this condition in terms of the rows of B as

AT
newbi = ei, i = 1, . . . , n,

where ei denotes the ith standard basis vector in Rn. Similarly, we can write our objective
in terms of the rows of B:

J =
n∑

i=1

n∑
j=1

(BAold − I)2ij =
n∑

i=1

∥(BAold − I)i∗∥2 =
n∑

i=1

∥AT
oldbi − ei∥2.

Thus, we want to solve the following optimization problem.

minimize
B∈Rn×m

∑n
i=1∥AT

oldbi − ei∥2

subject to AT
newbi = ei i = 1, . . . , n

This problem is separable in the rows of B, allowing us to decompose it into n vector
optimization problems:

minimize
bi∈Rm

∥AT
oldbi − ei∥2

subject to AT
newbi = ei
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for i = 1, . . . , n. Each of these problems is a linearly constrained minimum-norm prob-
lem; the solution of such a problem can be obtained by solving the following system of
equations: [

AoldA
T
old Anew

AT
new 0

] [
bi
λi

]
=

[
Aoldei
ei

]
, i = 1, . . . , n.

This method works as long as each of these optimization problems is feasible – that is,
as long as we can find a matrix B ∈ Rn×m such that

BAnew = I.

In other words, we require that Anew be skinny and full rank (or, equivalently, left
invertible). In order for the KKT system to have a unique solution, we require that
AT

new be fat and full rank, and [
AT

old

AT
new

]
be skinny and full rank. Equivalently, we require that Anew be skinny and full rank, and[
Aold Anew

]
be fat and full rank.

b) The optimal value of J is 3.2361; in comparison, the value of J achieved by A†
new is

8.0901, which is significantly higher.

c) The bit error rate using the equalizer B is 0.0333, while the bit error rate using A†
new is

0.1000. Thus, we see that B has a much lower bit error rate than A†
new.

using LinearAlgebra

include("readclassjson.jl")

data = readclassjson("backwards_compatible_transceiver_data.json")

A_new = data["Anew"]

A_old = data["Aold"]

x = data["x"]

block_matrix = [2*A_old*A_old’ A_new; A_new’ zeros(30, 30)]

B = zeros(30, 50)

E = I(30)

for i in 1:30
B[i,:] = (block_matrix\[(2*A_old*E[i,:])’ E[i,:]’]’)[1:50]

end
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B

B*A_new

norm(B*A_old - E)^2

A_pinv = inv(A_new’*A_new)*A_new’

norm(A_pinv*A_old - E)^2

y_old = A_old*x

x_est = B*y_old

x_est_pinv = A_pinv*y_old

for i in 1:30
if x_est[i]>0.5

x_est[i] = 1
else

x_est[i] = 0
end

end

x_est

for i in 1:30
if x_est_pinv[i]>0.5

x_est_pinv[i] = 1
else

x_est_pinv[i] = 0
end

end

x_est_pinv

function get_bit_rate(x_est, x, n)
wrong = 0
for i in 1:n

if x_est[i] != x[i]
wrong+=1

end
end
return wrong/n

end
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get_bit_rate(x_est, x, 30)

get_bit_rate(x_est_pinv, x, 30)

■

15.2150. Norm expressions for quadratic forms. Let f(x) = xTAx (with A = AT ∈ Rn×n) be a
quadratic form.

a) Show that f is positive semidefinite (i.e., A ≥ 0) if and only if it can be expressed as
f(x) = ∥Fx∥2 for some matrix F ∈ Rk×n. Explain how to find such an F (when A ≥ 0).
What is the size of the smallest such F (i.e., how small can k be)?

b) Show that f can be expressed as a difference of squared norms, in the form f(x) =
∥Fx∥2 − ∥Gx∥2, for some appropriate matrices F and G. How small can the sizes of F
and G be?

Solution.

a) We know that the norm expression f(x) = ∥Fx∥2 is a positive semidefinite quadratic
form simply because f(x) ≥ 0 for all x and f(x) = xTAx with A = FTF ≥ 0. In
this problem we will show the converse, i.e., any positive semidefinite quadratic form
f(x) = xTAx can be written as a norm expression f(x) = ∥Fx∥2. Suppose the eigenvalue
decomposition of A ≥ 0 is QΛQT, with QTQ = I and Λ = diag(λ1, . . . , λn) where λi are
the eigenvalues of A. Since λi ≥ 0 (because A ≥ 0) then Λ1/2 = diag(

√
λ1, . . . ,

√
λn)

is a real matrix. Let F = Λ1/2QT ∈ Rn×n. Then we have ∥Fx∥2 = xTFTFx =
QΛ1/2Λ1/2QT = xTAx = f(x). To get smallest F suppose that rank(A) = r. Therefore,
A ∈ Rn×n has exactly r nonzero eigenvalues λ1, . . . , λr. Suppose Λ+ = diag(λ1, . . . , λr).
Hence, the eigenvalue decomposition of A can be written as

A =
[
Q1 Q2

] [ Λ+ 0r×(n−r)

0(n−r)×r 0(n−r)×(n−r)

] [
QT

1

QT
2

]
and as a result A = Q1Λ+Q

T
1 where Q1 ∈ Rn×r. Now we can take F = Λ

1/2
+ QT

1 ∈ Rr×n.
Therefore, k can be as small as r, i.e., k = rank(r). Note that k cannot be any smaller
than rank(A) because A = FTF implies that rank(A) ≤ k.

b) In general, a quadratic form need not to be positive semidefinite. In this problem we
show that any quadratic form can be decomposed into its “positive” and “negative”
parts. In other words, we can write f(x) as the difference of two norm expressions, i.e.,
f(x) = ∥Fx∥2 − ∥Gx∥2. Suppose A has n1 positive eigenvalues λ1, . . . , λn1 , n2 negative
eigenvalues λn1+1, . . . , λn1+n2 , and therefore n− n1 − n2 zero eigenvalues. Let

Λ+ = diag(λ1, . . . , λn1), Λ− = diag(−λn1+1, . . . ,−λn1+n2).

The eigenvalue decomposition of A can be written as

A =
[
Q1 Q2 Q3

]  Λ+ 0n1×n2 0n1×(n−n1−n2)

0n2×n1 −Λ− 0n2×(n−n1−n2)

0(n−n1−n2)×n1
0(n−n1−n2)×n2

0(n−n1−n2)×(n−n1−n2)

QT
1

QT
2

QT
3
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so A = Q1Λ+Q
T
1 −QT

2Λ−Q2. Now simply take F = Λ
1/2
+ QT

1 ∈ Rn1×n and G = Λ
1/2
− QT

2 ∈
Rn2×n. It is easy to verify that A = FTF −GTG and therefore xTAx = ∥Fx∥2−∥Gx∥2.
In fact, this method gives the smallest sizes for F and G.

15.2790. Ellipsoids.

a) Write a function that, given a a 2 × 2 real, positive definite symmetric matrix A > 0,
plots the ellipse

E =
{
x ∈ R2 | xTAx = 1

}
Make sure that your plot is shown so that horizontal and vertical lengths are the same,
that is, with aspect ratio 1. Turn in your code.

Julia hint: use the following to draw a plot with correct aspect ratio.

Using Plots; plot(x, y, aspect_ratio=:equal)

b) Use your code to plot the ellipsoid for the matrix

A =

[
1 0
0 2

]
c) Use your code to plot the ellipsoid for the matrix

A =

[
0.2 −0.1
−0.1 0.4

]
On your plot, also show semiaxes.

d) Consider an estimation problem, where we have three sensors, define by bi ∈ R2 for
i = 1, 2, 3. We measure yi = bTi x. The vectors bi are

b1 =

[
0.89
0.45

]
b2 =

[
0.45
0.89

]
b3 =

[
−0.71
0.71

]
Plot the set of x ∈ R2 for which ∥y∥ ≤ 1. On your plot, show also the bi (that is, plot a
line from the origin to bi).

Solution.

a) The following function plots the ellipse

using Plots
using LinearAlgebra

function ellipse(A)
D, V = eigen(A)
B = V’ * diagm(1 ./sqrt.(D)) * V
xy = [B*[cos(t), sin(t)] for t in range(0,2pi,length=100)]
x = [a[1] for a in xy]
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y = [a[2] for a in xy]
plot(x, y, aspect_ratio=:equal)

end

function plotaxes(p, A)
for x in getaxes(A)

plot!(p,[0, x[1]], [0,x[2]])
end

end

function getaxes(A)
D, V = eigen(A)
n = size(A,2)
return [V[:,i] / sqrt(D[i]) for i=1:n]

end

function partb()
A = [1 0 ; 0 2]
p = ellipse(A)
plotaxes(p, A)
savefig(p, "partb.png")
display(p)

end

function partc()
A = [0.2 -0.1 ; -0.1 0.4]
p = ellipse(A)
plotaxes(p, A)
savefig(p, "partc.png")
display(p)

end

function partd()
A = [0.89 0.45

0.45 0.89
-0.71 0.71]

p=ellipse(A’*A)
for x in eachrow(A)

plot!(p,[0, x[1]], [0,x[2]])
end
savefig(p, "partd.png")
display(p)

end
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partb()
partc()
partd()

b) The plot is below.

c) The plot is below.

d) The plot is below.

10



16.2980. Smoothing. We have a discrete-time signal given by x ∈ Rn. We get to measure y ∈ Rn,
given by

yi =
h∑

k=−h

ckxi+k + wi for i = 1, . . . , n

where wi is noise. Here we use the convention that xi = 0 for i < 1 or i > n. That is, y is c
convolved with x plus noise. In applications, very often the effect of convolution with c is to
smooth or blur x, and we would like to undo this.

The file regl_data.json contains c, w and x.

a) In Julia, construct the n× n matrix such that y = Ax+ w. Plot the singular values σk
against k.

b) Plot the first 6 right singular vectors of A (i.e. plot Vij against i for j = 1, . . . , 6.) Explain
what you see.

c) Find and plot the least-squares estimate of x given ymeas, computng ymeas using c, x and
w given in regl_data.json. Explain what happens.

d) Many of the singular values of A are very small; this means that the measurement in the
directions of the corresponding right singular vectors is being swamped by the noise.

If we believe these components are small, we can remove them from our estimate of x
altogether by truncating the SVD of A and using the truncated SVD to compute the
estimate. This is called the truncated SVD regularization of least-squares.

Suppose we decided only to keep the first r components. Then truncate by letting Ṽ
and Ũ be the first r columns of V and U , and letting Σ̃ be the top-left r × r submatrix
of Σ. Then we can construct an estimator that ignores the noise components by

Aest = Ṽ Σ̃−1ŨT

and set
xest = Aestymeas

For values of r in 5, 10, 15, 30, 50, compute and plot the corresponding estimates of x.
Explain what you see.

e) For each r between 1 and 35, compute the norm of the error

∥x− xest∥

Plot this against r. Explain what you see.

f) Pick the ‘best’ r and plot the corresponding estimate.

g) Another approach is to use Tychonov regularization. Find and plot the vector xreg ∈ Rn

that minimizes the function
∥Ax− y∥2 + µ∥x∥2,

where µ > 0 is the regularization parameter. Pick a value of µ that gives a good estimate,
in your opinion.
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h) The regularized solution is a linear function of y, so it can be expressed as xreg = By
where B ∈ Rn×n. Express the SVD of B in terms of the SVD of A. To be more specific,
let

B =

n∑
i=1

σ̃iũiṽ
T
i

denote the SVD of B. Express σ̃i, ũi, ṽi, for i = 1, . . . , n, in terms of σi, ui, vi, i = 1, . . . , n
(and, possibly, µ). Recall the convention that σ̃1 ≥ · · · ≥ σ̃n.

i) Find the norm of B. Give your answer in terms of the SVD of A (and µ).

j) Find the worst-case relative inversion error, defined as

max
y ̸=0

∥ABy − y∥
∥y∥

.

Give your answer in terms of the SVD of A (and µ).

Solution.

a) A can be constructed from c easily. The singular values of A is as follows.
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0.9

1
Singular Values of A

Note that they decay very fast, and some are extremely small. In particular, this shows
that this estimation problem will be extremely sensitive to noise and numerical errors in
the measurement, since the condition number is large.

b) The first six singular vectors are below.

12



0 50 100 150 200
−0.1

−0.05

0

v1 of A

0 50 100 150 200
−0.1

0

0.1

v2 of A

0 50 100 150 200
−0.1

0

0.1

v3 of A

0 50 100 150 200
−0.1

0

0.1

v4 of A

0 50 100 150 200
−0.1

0

0.1

v5 of A

0 50 100 150 200
−0.1

0

0.1

v6 of A

The matrix A is a smoother, or low-pass filter. So we should expect that it has a gain that
depends on the ‘frequency’ of the input. The plot show that this intuition is correct; the
input is broken down into different frequency components by the matrix of right singular
vectors V , each is scaled by the corresponding singular value, and then the output is
constructed. The left singular vectors look similar. Since its a low-pass filter, the larger
singular values correspond to low frequencies.

c) Below are the plots of x, ymeas, and xls.
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Our estimate is extremely badly corrupted by the noise, because of the high condition
number of A; the estimation ellipsoid is long and thin, and we have extremely poor
estimates of the components of x corresponding to small singular values of A. These are
the high frequency components. They are multiplied by the small singular values, and
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so are swamped by the noise.

d) The plots below show the estimates obtained with different values of r.
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The regularization ignores components of the frequency corresponding to right singular
vectors vk when k > r. These are the higher-frequency and more noise components.
Removing them is equivalent to making the assumption that that component is actually
zero, rather than using the measured data.

The estimate is poor for r very small, because much of the signal is being ignored by
the regularization. It is also poor at large r, when very noisy measurements of the
high-frequency components are used.

e) The error is plotted below.
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The graph shows the error phenomena described in part (d). Using too few singular
values means we lose too much information, using too many means we use information
which is very badly corrupted by noise.

f) From the above graph, we find the number of singular values which results in the mini-
mum error is 28.

The corresponding estimate is below.
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g) One of good values of µ can be chosen as µ = 0.05 by computing errors for various values
of µ. Below is the estimate corresponding to µ = 0.05.
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h) The regularized least-squares solution is given by xrls(µ) =
(
ATA+ µI

)−1
AT y, and thus

B =
(
ATA+ µI

)−1
AT

=
((

UΣV T
)T

UΣV T + µI
)−1 (

UΣV T
)T

=
(
V ΣUTUΣV T + µI

)−1
V ΣUT

=
(
V
(
Σ2 + µI

)
V T

)−1
V ΣUT

=
(
V
(
Σ2 + µI

)−1
V T

)
V ΣUT

= V
(
Σ2 + µI

)−1
ΣUT

= V diag

(
σi

σ2
i + µ

)
UT .

This is almost the SVD of B, except for one detail: the numbers
σi

σ2
i + µ

aren’t necessarily ordered from largest to smallest. Thus we have

σ̃i =
σ[i]

σ2
[i] + µ

ũi = v[i], ṽi = u[i],

where the notation x[i] means the ith largest element of x. (We accepted all sorts of
descriptions of this!) One common misconception was that the numbers

σi
σ2
i + µ

were simply in reverse order, so all that had to be done was to reverse the ordering.
That isn’t true; just sketch the function σ/(σ2 + µ) as a function of µ to see that it is
not always decreasing. (It increases first, then decreases.)
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i) The norm of B is its largest singular value, i.e.,

∥B∥ = max
i

σi
σ2
i + µ

.

j) The worst-case relative inversion error is the matrix norm of AB − I:

AB − I = UΣV TV
(
Σ+ µΣ−1

)−1
UT − I

= UΣ
(
Σ+ µΣ−1

)−1
UT − I

= U
((

I + µΣ−2
)−1 − I

)
UT

= Udiag

(
1

1 + µ/σ2
i

− 1

)
UT

= −Udiag

(
µ

σ2
i + µ

)
UT

This is the SVD of AB − I (to within reordering). Its largest singular value, i.e., the
norm of AB − I, is given by

∥AB − I∥ =
µ

σ2
n + µ

.

Note that we had to absorb the negative sign in the lefthand orthogonal matrix; one
common error was to keep the negative sign in the norm. Obviously that couldn’t be
right because norms are always nonnegative!
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