
EE263 Homework 4 Solutions
Fall 2023

3.530. Checking some range and nullspace conditions. Explain how to determine whether or
not the following statements hold:

a) range(A) = range(B).

b) range(A) ⊥ range(B).

c) range(A) ∩ range(B) = {0}.

d) range(C) ⊆ null(B).

The matrices have dimensions A ∈ Rm×n, B ∈ Rm×p, C ∈ Rp×m.
Your answer can involve standard matrix operations on the matrices above, such as addi-

tion, multiplication, transposition, concatenation (i.e., building block matrices), and inversion,
as well as a function rank(X), that gives the rank of a matrix X, and det(X), which gives the
determinant of a (square) matrix X.

For example, you might assert that (a) holds if and only if rank([A B]) = m. (This is not
correct; it’s just an example of what your answer might look like.)

You do not need to give a proof or long justification that your conditions are correct; a
short one or two sentence explanation for each statement is fine. Points will be deducted from
correct answers that are substantially longer than they need to be, or are confusing (to us).

Solution.

a) range(A) = range(B) if and only if rank([A B]) = rank(A) = rank(B).

First assume that range(A) = range(B) holds. In general we have range([A B]) =
range(A) + range(B). Since range(A) = range(B), we have since range([A B]) =
range(A) = range(B) (this is equality of three subspaces of Rm). Taking the dimension
of these three (identical) subspaces, we conclude rank([A B]) = rank(A) = rank(B).

To show the converse, suppose that rank([A B]) = rank(A) = rank(B). We always have
range([A B]) ⊇ range(A) (and same for B). From the assumption, these two subspaces
have the same dimension, and we conclude they are equal, i.e., range([A B]) = range(A).
The same holds for B, and we conclude that range(A) = range(B).

b) range(A) ⊥ range(B) if and only if ATB = 0.

First note that range(A) ⊥ range(B) means that for any u and any v, we have (Au) ⊥
(Bv). This is equivalent to saying (Au)T(Bv) = uT(ATB)v = 0 for any u and v, which
occurs if and only if ATB = 0. Recall that this last statement follows from the fact that
if uTCv = 0 for all u and v, then, in particular, cij = eTi Cej = 0 for all i, j.

c) range(A) ∩ range(B) = {0} if and only if rank([A B]) = rank(A) + rank(B).

It will be easier to see the above equivalence if we have an orthonormal basis for range(A)
and for range(B). Thus, let QA and QB be matrices (coming from, say, a QR factor-
ization) whose columns form a basis for range(A) and range(B), respectively. Note that
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the ranges of A and QA are the same, and so are their ranks. The same is true for B
and QB. Also, note that rank([A B]) = rank([QA QB]).

With this set up, we can proceed. Note that range(QA) ∩ range(QB) = {0} if and only
if QAx = QBy is only solved when QAx = 0 = QBy. Since the columns of QA and QB

form independent sets, this happens if and only if x = 0 and y = 0. If we let z = −y,
we can rewrite this statement as [

QA QB

] [ x
z

]
= 0

if and only if x = 0 and z = 0, which is the same as saying that the columns of [QA QB]
are linearly independent, or [QA QB] has full rank. That is,

rank([QA QB]) = rank(QA) + rank(QB).

(Each of these matrices is full rank, so the rank is just the number of columns.)

Now, we can finally conclude that range(A)∩ range(B) = range(QA)∩ range(QB) = {0}
if and only if

rank([A B]) = rank([QA QB]) = rank(QA) + rank(QB) = rank(A) + rank(B).

d) range(C) ⊆ null(B) if and only if BC = 0.

Stating range(C) ⊆ null(B) is equivalent to stating that for any u, Cu ∈ null(B). This,
in turn, is equivalent to B(Cu) = 0 for any u, which occurs if and only if BC = 0.

4.600. Sensor integrity monitor. A suite of m sensors yields measurement y ∈ Rm of some vector
of parameters x ∈ Rn. When the system is operating normally (which we hope is almost
always the case) we have y = Ax, where m > n. If the system or sensors fail, or become
faulty, then we no longer have the relation y = Ax. We can exploit the redundancy in our
measurements to help us identify whether such a fault has occured. We’ll call a measurement
y consistent if it has the form Ax for some x ∈ Rn. If the system is operating normally then
our measurement will, of course, be consistent. If the system becomes faulty, we hope that
the resulting measurement y will become inconsistent, i.e., not consistent. (If we are really
unlucky, the system will fail in such a way that y is still consistent. Then we’re out of luck.)
A matrix B ∈ Rk×m is called an integrity monitor if the following holds:

• By = 0 for any y which is consistent.

• By ̸= 0 for any y which is inconsistent.

If we find such a matrix B, we can quickly check whether y is consistent; we can send an
alarm if By ̸= 0. Note that the first requirement says that every consistent y does not trip the
alarm; the second requirement states that every inconsistent y does trip the alarm. Finally,
the problem. Find an integrity monitor B for the matrix

A =


1 2 1
1 −1 −2
−2 1 3
1 −1 −2
1 1 0

 .

2



Your B should have the smallest k (i.e., number of rows) as possible. As usual, you have to
explain what you’re doing, as well as giving us your explicit matrix B. You must also verify
that the matrix you choose satisfies the requirements. Hints:

• You might find one or more of the Julia functions nullspace or qr useful. Then again,
you might not; there are many ways to find such a B.

• When checking that your B works, don’t expect to have By exactly zero for a consistent
y; because of roundoff errors in computer arithmetic, it will be really, really small. That’s
OK.

• Be very careful typing in the matrix A. It’s not just a random matrix.

Solution. The key challenge in this problem is to restate everything in common linear algebra
and matrix terms. We need to find B ∈ Rk×m such that the following hold:

• By = 0 for any consistent y

• By ̸= 0 for any inconsistent y

Let’s analyze the conditions, starting with the first one. The set of consistent measurements
is exactly equal to the range of the matrix A; so say that By = 0 for every consistent y is the
same as saying range(A) ⊆ null(B), i.e., every element in the range of A is also in the nullspace
of B. In terms of matrices, the first condition means that for every x, we have BAx = 0.
That’s true if and only if BA = 0. (Recall these are matrices, so we can have BA = 0 without
A = 0 or B = 0.) We now consider the second condition. To say that every inconsistent y
has By ̸= 0 is equivalent to saying that whenever By = 0, we have y is consistent. This is
the same as saying null(B) ⊆ range(A). Putting this together with the first condition, we
get a really simple condition: null(B) = range(A). In other words, we need to find a matrix
B whose nullspace is exactly equal to the range of A. Now to find such a B with smallest
possible number of rows, we need B to be full rank. Its rank must be m minus the dimension
of the range of A, i.e., m − rank(A). Now that we know what we’re looking for, there are
several ways to find such a B, given A. Note that whatever method we end up using we can
check that we’ve got a solution by checking that BA = 0 and B is full rank. One method
relies on the fact from lectures that for any matrix C, null(C) and range(CT) are orthogonal
complements. It follows that null(B) and range(BT) are orthogonal complements, and so are
range(A) and null(AT). We require that null(B) = range(A), so this means their orthogonal
complements are equal, i.e., range(BT) = null(AT). In Julia, we can compute a basis for the
nullspace of AT using the command null. (In fact null gives us an orthonormal basis for the
nullspace, but for this problem all we care about is that we get a basis for the nullspace.) This
approach can be implemented with the simple Julia code:

A = [ 1 2 1 ; 1 -1 -2; -2 1 3 ; 1 -1 -2; 1 1 0]; B = null(A’)’;
B*A
rank(B)

The matrix BA does turn out to be zero for all practical purposes; the entries are very, very
small, but nonzero because of roundoff error in computer arithmetic. One subtlety you may
or may not have noticed is that A is not full rank; it has rank 2. In fact, its third column is
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equal to its second column minus its first column. That’s why we end with k = 3, and not 2,
as you might have expected. Another way to find such a B uses the full QR factorization of
A. If we have QR factorization

A = [Q1 Q2]

[
R1

0

]
,

where [Q1 Q2] is orthogonal and R1 is upper triangular and invertible, then the columns of
Q1 are an orthonormal basis for the range of A, and the columns of Q2 are an orthonormal
basis for the orthogonal complement. Therefore we can take B = QT

2 . This approach can be
carried out Julia via

[Q,R]=qr(A);
Q2 = Q[:,[3,4,5]]; # get the last three columns of Q
B = Q2’;
B*A
rank(B)

Two common errors involved the size of B. In each case, B satisfies BA = 0, so whenever y is
consistent, we have By = 0. The first error was to have a B that is too small, i.e., has fewer
than 3 rows. Such a B doesn’t satisfy the second condition; there are inconsistent y’s with
By = 0. Therefore B’s with fewer than 3 rows aren’t integrity monitors. The opposite error,
of having B with more than 3 rows, isn’t quite so bad. In this case, your B doesn’t have the
minimal number of rows, but it is a real integrity monitor.

4.830. True/false questions about linear algebra. Determine whether each of the following
statements is true or false. In each case, give either a proof or a counterexample.

a) If Q has orthonormal columns, then ∥QTw∥ ≤ ∥w∥ for all vectors w.

b) Suppose A ∈ Rm×p and B ∈ Rm×q. If null(A) = {0} and range(A) ⊂ range(B), then
p ≤ q.

c) If V =
[
V1 V2

]
is invertible and range(V1) = null(A), then null(AV2) = {0}.

d) If rank
([
A B

])
= rank(A) = rank(B), then range(A) = range(B).

e) Suppose A ∈ Rm×n. Then, x ∈ null(AT) if and only if x /∈ range(A).

f) Suppose A is invertible. Then, AB is not full rank if and only if B is not full rank.

g) If A is not full rank, then there is a nonzero vector x such that Ax = 0.

Solution.

a) The statement is true. Suppose Q ∈ Rm×n. Because the columns of Q are orthonormal,
and hence linearly independent, we know that m ≥ n. If m = n, then Q is an orthogonal
matrix, so QQT, and we have that

∥QTw∥2 = wT(QQT)w = wTw = ∥w∥2.
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Now consider the case when m > n. Let q1, . . . , qn be the columns of Q:

Q =
[
q1 · · · qn

]
.

Then, we can extend (q1, . . . , qn) to an orthonormal basis (q1, . . . , qm) for Rm. Define
the matrix Q̃ ∈ Rm×(m−n) such that

Q̃ =
[
qm+1 · · · qn

]
.

Then, we have that
[
Q Q̃

]
is an orthogonal matrix, so that

∥w∥2 =
∥∥∥[Q Q̃

]T
w
∥∥∥2 = ∥∥∥∥[QT

Q̃T

]
w

∥∥∥∥2 = ∥QTw∥2 + ∥Q̃Tw∥2 ≥ ∥QTw∥2.

Combining these results, we see that if the columns of Q are orthonormal, then ∥QTw∥ ≤
∥w∥ for all vectors w. (This result is known as Bessel’s inequality.)

b) The statement is true. Because range(A) ⊂ range(B), we have that

rank(A) = dim(range(A)) ≤ dim(range(B)) = rank(B).

Since the rank of a matrix is bounded by its number of columns, we have that

rank(B) ≤ q.

Conservation of dimension tells us that

rank(A) = dim(Rp)− dim(null(A)) = dim(Rp)− dim({0}) = p− 0 = p.

Combining these results, we have that

p = rank(A) ≤ rank(B) ≤ q.

c) The statement is true. Suppose y ∈ null(AV2). Then, V2y ∈ null(A) = range(V1), so
there exists a vector x such that V1x = V2y. Therefore, we have that

V1x− V2y =
[
V1 V2

] [ x
−y

]
= 0.

Because
[
V1 V2

]
is invertible, this implies that[

x
−y

]
= 0,

and hence that y = 0. Thus, we see that null(AV2) = {0}.

d) The statement is true. It is sufficient to show that if rank
([
A B

])
= rank(A), then

range(A) = range
([
A B

])
. This implies that if rank

([
A B

])
= rank(A) = rank(B),

then
range(A) = range

([
A B

])
= range(B).
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Consider any y ∈ range(A). There exists a vector x such that Ax = y. Then, we have
that [

A B
] [x

0

]
= Ax = y,

so that y ∈ range
([
A B

])
. Thus, we have that range(A) ⊂ range

([
A B

])
. (Note that

this result holds for any matrices A and B.) Now suppose that rank(A) = rank
([
A B

])
.

Let (q1, . . . , qm) be a basis for range(A). Since range(A) is a subspace of range
([
A B

])
,

we can extend this basis to a basis (q1, . . . , qn) for range
([
A B

])
. However, it must be

the case that
n = rank

([
A B

])
= rank(A) = m.

Thus, (q1, . . . , qm) is a basis for both range(A) and range(
[
A B

]
). Therefore, for any

y ∈ range(
[
A B

]
), there exist scalars c1, . . . , cm such that

y = c1q1 + · · ·+ cmqm.

Because (q1, . . . , qm) is also a basis for range(A), this implies that y ∈ range(A). This
shows that if rank(A) = rank

([
A B

])
, then range

([
A B

])
⊂ range(A), and thereby

completes the proof.

e) The statement is false. In fact, neither direction of the equivalence is true. Consider the
matrix

A =

[
1
0

]
.

For x = 0, we have that x ∈ null(AT), and x ∈ range(A); for x = (1, 1), we have that
x /∈ range(A), and x /∈ null(AT).

f) The statement is true. We claim that if A is invertible, then rank(AB) = rank(B). This
implies that AB is full rank if and only if B is full rank. Let (q1, . . . , qk) be a basis for
range(B). We claim that (Aq1, . . . , Aqk) is a basis for AB. Consider any y ∈ range(AB).
There exists a vector x such that (AB)x = y. Note that Bx is a vector in range(B), so
there exist scalars c1, . . . , ck such that

Bx = c1q1 + · · ·+ ckqk.

Then, we have that

y = (AB)x = A(Bx) = A(c1q1 + · · ·+ ckqk) = c1(Aq1) + · · ·+ ck(Aqk).

This shows that (Aq1, . . . , Aqk) spans range(AB). (This is true for any matrices A and
B.) Suppose there exist scalars d1, . . . , dk such that

d1(Aq1) + · · ·+ dk(Aqk) = A(d1q1 + · · ·+ dkqk) = 0.

Since A is invertible, this implies that

d1q1 + · · ·+ dkqk = A−10 = 0.
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Then, because (q1, . . . , qk) is a basis, and hence linearly independent, we have that

d1 = · · · = dk = 0.

This shows that (Aq1, . . . , Aqk) is linearly independent, and completes the proof that
(Aq1, . . . , Aqk) is a basis for range(AB). Since the dimension of a subspace is the number
of vectors in a basis for the subspace, we have that

rank(B) = dim(range(B)) = k = dim(range(AB)) = rank(AB).

g) The statement is true. If A is strictly fat, then there exists a nonzero vector x such that
Ax = 0 irrespective of whether of A is full rank. Suppose A is skinny (or square). If A
is not full rank, then the columns of A must be linearly dependent: that is, there exist
scalars x1, . . . , xn, at least one of which is nonzero, such that

x1A∗1 + · · ·+ xnA∗n = 0.

In matrix form, this equation says that

[
A∗1 · · · A∗n

] x1...
xn

 = Ax = 0,

where x ̸= 0. ■

5.680. Least-squares residuals. Suppose A is skinny and full-rank. Let xls be the least-squares
approximate solution of Ax = y, and let yls = Axls. Show that the residual vector r = y − yls
satisfies

∥r∥2 = ∥y∥2 − ∥yls∥2.

Also, give a brief geometric interpretation of this equality (just a couple of sentences, and
maybe a conceptual drawing).

Solution. Let us first show that r ⊥ yls. Since yls = Axls = AA†y = A(ATA)−1ATy

yls
Tr = yls

T(y − yls) = yls
Ty − yls

Tyls

= yTA(ATA)−1ATy − yTA(ATA)−1ATA(ATA)−1ATy

= yTA(ATA)−1ATy − yTA(ATA)−1(ATA)(ATA)−1ATy

= yTA(ATA)−1ATy − yTA(ATA)−1ATy

= 0.
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Thus, ∥y∥2 = ∥yls+r∥2 = (yls+r)T(yls+r) = ∥yls∥2+2yls
Tr+∥r∥2 = ∥yls∥2+∥r∥2. Therefore

∥r∥2 = ∥y∥2 − ∥yls∥2.
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yls = Axls

y

0

∥r∥

∥yls∥

∥y∥

R(A)

−→ By Pythagoras’ theorem, ∥y∥2 = ∥yls∥2 + ∥r∥2

6.741. Image reconstruction from line integrals. In this problem we explore a simple version
of a tomography problem. We consider a square region, which we divide into an n× n array
of square pixels, as shown below.

x1

x2

xn

xn+1

x2n x
n
2
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The pixels are indexed column first, by a single index i ranging from 1 to n2, as shown above.
We are interested in some physical property such as density (say) which varies over the region.
To simplify things, we’ll assume that the density is constant inside each pixel, and we denote
by xi the density in pixel i, i = 1, . . . , n2. Thus, x ∈ Rn2 is a vector that describes the density
across the rectangular array of pixels. The problem is to estimate the vector of densities x,
from a set of sensor measurements that we now describe. Each sensor measurement is a line
integral of the density over a line L. In addition, each measurement is corrupted by a (small)
noise term. In other words, the sensor measurement for line L is given by

n2∑
i=1

lixi + v,

where li is the length of the intersection of line L with pixel i (or zero if they don’t intersect),
and v is a (small) measurement noise. This is illustrated below for a problem with n = 3. In
this example, we have l1 = l6 = l8 = l9 = 0.

x1

x2

x3

x4

x5

x6

x8

x9

l2

l3

l4

l5

l7

line L

Now suppose we have N line integral measurements, associated with lines L1, . . . , LN . From
these measurements, we want to estimate the vector of densities x. The lines are characterized
by the intersection lengths

lij , i = 1, . . . , n2, j = 1, . . . , N,

where lij gives the length of the intersection of line Lj with pixel i. Then, the whole set of
measurements forms a vector y ∈ RN whose elements are given by

yj =
n2∑
i=1

lijxi + vj , j = 1, . . . , N.

And now the problem: you will reconstruct the pixel densities x from the line integral measure-
ments y. The class webpage contains the file tomo_data.json, which contains the following
variables:

• N, the number of measurements (N),
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• npixels, the side length in pixels of the square region (n),

• y, a vector with the line integrals yj , j = 1, . . . , N ,

• line_pixel_lengths, an n2 × N matrix containing the intersection lengths lij of each
pixel i = 1, . . . , n2 (ordered column-first as in the above diagram) and each line j =
1, . . . , N ,

• lines_d, a vector containing the displacement (distance from the center of the region in
pixel lengths) dj of each line j = 1, . . . , N , and

• lines_theta, a vector containing the angles θj of each line j = 1, . . . , N .

(You shouldn’t need lines_d or lines_theta, but we’re providing them to give you some
idea of how the data was generated. Similarly, the file tmeasure.jl shows how we computed
the measurements, but you don’t need it or anything in it to solve the problem. The variable
line_pixel_lengths was computed using the function in this file.)

Use this information to find x, and display it as an image (of n by n pixels). You’ll know
you have it right.

Julia hints:

• The reshape function might help with converting between vectors and matrices, for
example, A = reshape(v, m, n) will convert a vector with v = mn elements into an
m× n matrix.

• To display a matrix A as a grayscale image, you can use: (or any method that works for
you)
heatmap(A, yflip=true, aspect_ratio=:equal, color=:gist_gray,

cbar=:none, framestyle=:none)

You’ll need to have loaded the JuliaPlots package with using Plots to access the
heatmap function. (The yflip argument gets it to plot the origin in the top-left rather
than the bottom-left.)

Note: While irrelevant to your solution, this is actually a simple version of tomography,
best known for its application in medical imaging as the CAT scan. If an x-ray gets attenuated
at rate xi in pixel i (a little piece of a cross-section of your body), the j-th measurement is

zj =

n2∏
i=1

e−xilij ,

with the lij as before. Now define yj = − log zj , and we get

yj =

n2∑
i=1

xilij .
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Solution. The first thing to do is to restate the problem in the familiar form y = Ax + v.
Here, y ∈ RN is the measurement (given), x ∈ Rn2 is the physical quantity we are interested
in, A ∈ RN×n2 is the relation between them, and v ∈ RN is the noise, or measurement error
(unknown, and we’ll not worry about it). So we need to find the elements of A . . . how do
we do that?

Comparing y = Ax, i.e., yj =
n2∑
i=1

Ajixi with our model yj =
n2∑
i=1

lijxi + vj

it is clear that Aji = lij , j = 1 . . . N, i = 1 . . . n2. We have thus determined a standard
linear model that we want to "invert" to find x. On running tomo_data.json, we find that
n = 30 and N = 1225, so N > n2, i.e., we have more rows than columns – a skinny matrix. If
A is full-rank the problem is overdetermined. We can find a unique (but not exact) solution
xls – the least-squares solution that minimizes ∥Ax − y∥ – which, due to its noise-reducing
properties, provides a good estimate of x (it is the best linear unbiased estimate). So here’s
what we do: we construct A element for element by finding the length of the intersection of
each line with each pixel. That’s done using line_pixel_length.jl provided. A turns out
to be full-rank (rank(A) returns 64), so we can compute a unique xls. We go ahead and solve
the least-squares problem, and then display the result.

Here comes a translation of the above paragraph into Julia code:

using LinearAlgebra
using Plots

include("readclassjson.jl")
data = readclassjson("tomo_data.json")
N = data["N"]
L = data["line_pixel_lengths"]
npixels = data["npixels"]
y = data["y"];

x = (L*L’) \ L * y
image = reshape(x, npixels, npixels)
heatmap(image, yflip=true, aspect_ratio=:equal, \

color=:gist_gray, cbar=:none, framestyle=:none)
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And here’s the end result, the reconstructed image
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7.1060. Curve-smoothing. We are given a function F : [0, 1] → R (whose graph gives a curve in
R2). Our goal is to find another function G : [0, 1] → R, which is a smoothed version of F .
We’ll judge the smoothed version G of F in two ways:

• Mean-square deviation from F , defined as

D =

∫ 1

0
(F (t)−G(t))2 dt.

• Mean-square curvature, defined as

C =

∫ 1

0
G′′(t)2 dt.

We want both D and C to be small, so we have a problem with two objectives. In general
there will be a trade-off between the two objectives. At one extreme, we can choose G = F ,
which makes D = 0; at the other extreme, we can choose G to be an affine function (i.e.,
to have G′′(t) = 0 for all t ∈ [0, 1]), in which case C = 0. The problem is to identify the
optimal trade-off curve between C and D, and explain how to find smoothed functions G
on the optimal trade-off curve. To reduce the problem to a finite-dimensional one, we will
represent the functions F and G (approximately) by vectors f, g ∈ Rn, where

fi = F (i/n), gi = G(i/n).

You can assume that n is chosen large enough to represent the functions well. Using this
representation we will use the following objectives, which approximate the ones defined for the
functions above:

• Mean-square deviation, defined as

d =
1

n

n∑
i=1

(fi − gi)
2.
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• Mean-square curvature, defined as

c =
1

n− 2

n−1∑
i=2

(
gi+1 − 2gi + gi−1

1/n2

)2

.

In our definition of c, note that
gi+1 − 2gi + gi−1

1/n2

gives a simple approximation of G′′(i/n). You will only work with this approximate version
of the problem, i.e., the vectors f and g and the objectives c and d.

a) Explain how to find g that minimizes d + µc, where µ ≥ 0 is a parameter that gives
the relative weighting of sum-square curvature compared to sum-square deviation. Does
your method always work? If there are some assumptions you need to make (say, on
rank of some matrix, independence of some vectors, etc.), state them clearly. Explain
how to obtain the two extreme cases: µ = 0, which corresponds to minimizing d without
regard for c, and also the solution obtained as µ → ∞ (i.e., as we put more and more
weight on minimizing curvature).

b) Get the file curve_smoothing.json from the course web site. This file defines a specific
vector f that you will use. Find and plot the optimal trade-off curve between d and c.
Be sure to identify any critical points (such as, for example, any intersection of the curve
with an axis). Plot the optimal g for the two extreme cases µ = 0 and µ → ∞, and for
three values of µ in between (chosen to show the trade-off nicely). On your plots of g,
be sure to include also a plot of f , say with dotted line type, for reference.

Solution.

a) Let’s start with the two extreme cases. When µ = 0, finding g to minimize d + µc
reduces to finding g to minimize d. Since d is a sum of squares, d ≥ 0. Choosing g = f
trivially achieves d = 0. This makes perfect sense: to minimize the deviation measure,
just take the smoothed version to be the same as the original function. This yields zero
deviation, naturally, but also, it yields no smoothing! Next, consider the extreme case
where µ → ∞. This means we want to make the curvature as small as possible. Can
we drive it to zero? The answer is yes, we can: the curvature is zero if and only if g is
an affine function, i.e., has the form gi = ai + b for some constants a and b. There are
lots of vectors g that have this form; in fact, we have one for every pair of numbers a, b.
All of these vectors g make c zero. Which one do we choose? Well, even if µ is huge, we
still have a small contribution to d + µc from d, so among all g that make c = 0, we’d
like the one that minimizes d. Basically, we want to find the best affine approximation,
in the sum of squares sense, to f . We want to find a and b that minimize

∥∥∥∥f −A

[
a
b

]∥∥∥∥ where A =


1 1
2 1
3 1
...

...
n 1

 .
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For n ≥ 2, A is skinny and full rank, and a and b can be found using least-squares.
Specifically, [a b]T = (ATA)−1ATf . In the general case, minimizing d+ µc, is the same
as choosing g to minimize

∥∥∥∥ 1√
n
Ig − 1√

n
f

∥∥∥∥2 + µ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
n2

√
n− 2


−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0

0 0
. . . . . . . . .

...
0 0 · · · −1 2 −1


︸ ︷︷ ︸

S

g

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

.

This is a multi-objective least-squares problem. The minimizing g is

g = (ÃTÃ)−1ÃTỹ where Ã =

[
I√
n√
µS

]
and ỹ =

[
f√
n

0

]
.

The inverse of Ã always always exists because I is full rank. The expression can also be
written as g = ( In + µSTS)−1 f

n .

b) The following plots show the optimal trade-off curve and the optimal g corresponding
to representative µ values on the curve.
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The following matlab code finds and plots the optimal trade-off curve between d and c.
It also finds and plots the optimal g for representative values of µ. As expected, when
µ = 0, g = f and no smoothing occurs. At the other extreme, as µ goes to infinity, we
get an affine approximation of f . Intermediate values of µ correspond to approximations
of f with different degrees of smoothness.

using LinearAlgebra
using Plots
using ToeplitzMatrices

include("readclassjson.jl")
data = readclassjson("curve_smoothing_data.json")
f = data["f"]
n = data["n"]

S = Toeplitz(vec([-1; zeros(n-3,1)]), vec([-1; 2; -1; zeros(n-3,1)]));
S = S*n^2/(sqrt(n-2));
I_n = 1*Matrix(I, n, n)
g_no_deviation = f;

error_curvature = []
error_deviation = []
append!(error_curvature, norm(S*g_no_deviation)^2)
append!(error_deviation, 0)
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u = 10 .^(range(-8,stop=-3,length=30));

for i = eachindex(u)
A_tilde = [1/sqrt(n)*I_n; sqrt(u[i])*S];
y_tilde = [1/sqrt(n)*f; zeros(n-2,1)];
g = A_tilde\y_tilde;
append!(error_deviation, norm(1/sqrt(n)*I_n*g-f/sqrt(n))^2);
append!(error_curvature, norm(S*g)^2);

end

a1 = collect(1:n);
a2 = ones(n,1);
A = [a1 a2];
affine_param = inv(A’*A)*A’*f;

g_no_curvature = []
for i = 1:n

append!(g_no_curvature, affine_param[1]*i+affine_param[2])
end

g_no_curvature = g_no_curvature’;
append!(error_deviation, 1/n*norm(vec(g_no_curvature)-f)^2);
append!(error_curvature, 0);

plot(error_deviation, error_curvature, label = "");
xlabel!("Sum-square deviation (y intercept = 0.3347)");
ylabel!("Sum-square curvature (x intercept = 1.9724e06)");
title!("Optimal tradeoff curve");
savefig("Optimal_tradeoff_curve.png")
u1 = 10e-7;
A_tilde = [1/sqrt(n)*I_n;sqrt(u1)*S];
y_tilde = [1/sqrt(n)*f;zeros(n-2,1)];
g1 = A_tilde\y_tilde;
u2 = 10e-5;
A_tilde = [1/sqrt(n)*I_n;sqrt(u2)*S];
y_tilde = [1/sqrt(n)*f;zeros(n-2,1)];
g2 = A_tilde\y_tilde;
u3 = 10e-4;
A_tilde = [1/sqrt(n)*I_n;sqrt(u3)*S];
y_tilde = [1/sqrt(n)*f;zeros(n-2,1)];
g3 = A_tilde\y_tilde;

scatter(f, label = "f", marker = (:star, 5), color = :black);
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plot!(g_no_deviation, label = "mu = 0", line = (:solid, 2),);
plot!(g1, label = "mu = 10e-7", line = (:dash, 2),);
plot!(g2, label = "mu = 10e-5", line = (:dashdot, 2),);
plot!(g3, label = "mu = 10e-4", line = (:dashdotdot, 2),);
plot!(vec(g_no_curvature), label = "mu = inf", line = (:dot, 2),);
title!("Curves illustrating the trade-off");
savefig("Curves.png")

Note: Several exams had a typo that defined

c =
1

n− 1

n−1∑
i=2

(
gi+1 − 2gi + gi−1

1/n2

)2

instead of

c =
1

n− 2

n−1∑
i=2

(
gi+1 − 2gi + gi−1

1/n2

)2

.

The solutions above reflect the second definition. Full credit was given for answers consistent
with either definition. Some common errors

• Several students tried to approximate f using low-degree polynomials. While fitting f
to a polynomial does smooth f , it does not necessarily minimize d+ µc for some µ ≥ 0,
nor does it illustrate the trade-off between curvature and deviation.

• In explaining how to find the g that minimizes d+ µc as µ → ∞, many people correctly
observed that if g ∈ null(S), then c = 0. For full credit, however, solutions had to show
how to choose the vector in null(S) that minimizes d.

• Many people chose to zoom in on a small section of the trade-off curve rather than plot
the whole range from 0 to µ → ∞. Those solutions received full-credit provided they
calculated the intersections with the axes (i.e. provided they found the minimum value
for d+ µc when µ = 0 and when µ → ∞).
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