
EE263 Homework 3 Solutions
Fall 2023

3.250. Color perception. Human color perception is based on the responses of three different types
of color light receptors, called cones. The three types of cones have different spectral-response
characteristics, and are called L, M, and, S because they respond mainly to long, medium,
and short wavelengths, respectively. In this problem we will divide the visible spectrum into
20 bands, and model the cones’ responses as follows:

Lcone =
20∑
i=1

lipi, Mcone =
20∑
i=1

mipi, Scone =
20∑
i=1

sipi,

where pi is the incident power in the ith wavelength band, and li, mi and si are nonnegative
constants that describe the spectral responses of the different cones. The perceived color
is a complex function of the three cone responses, i.e., the vector (Lcone,Mcone, Scone), with
different cone response vectors perceived as different colors. (Actual color perception is a bit
more complicated than this, but the basic idea is right.)

a) Metamers. When are two light spectra, p and p̃, visually indistinguishable? (Visually
identical lights with different spectral power compositions are called metamers.)

b) Visual color matching. In a color matching problem, an observer is shown a test light,
and is asked to change the intensities of three primary lights until the sum of the primary
lights looks like the test light. In other words, the observer is asked the find a spectrum
of the form

pmatch = a1u+ a2v + a3w,

where u, v, w are the spectra of the primary lights, and ai are the intensities to be
found, that is visually indistinguishable from a given test light spectrum ptest. Can this
always be done? Discuss briefly.

c) Visual matching with phosphors. A computer monitor has three phosphors, R, G, and
B. It is desired to adjust the phosphor intensities to create a color that looks like
a reference test light. Find weights that achieve the match or explain why no such
weights exist. The data for this problem is in color_perception_data.json, which con-
tains the vectors wavelength, B_phosphor, G_phosphor, R_phosphor, L_coefficients,
M_coefficients, S_coefficients, and test_light.

d) Effects of illumination. An object’s surface can be characterized by its reflectance (i.e.,
the fraction of light it reflects) for each band of wavelengths. If the object is illuminated
with a light spectrum characterized by Ii, and the reflectance of the object is ri (which is
between 0 and 1), then the reflected light spectrum is given by Iiri, where i = 1, . . . , 20
denotes the wavelength band. Now consider two objects illuminated (at different times)
by two different light sources, say an incandescent bulb and sunlight. Sally argues that
if the two objects look identical when illuminated by a tungsten bulb, then they will
look identical when illuminated by sunlight. Beth disagrees: she says that two objects
can appear identical when illuminated by a tungsten bulb, but look different when lit by
sunlight. Who is right? If Sally is right, explain why. If Beth is right give an example

1

of two objects that appear identical under one light source and different under another.
You can use the vectors sunlight and tungsten defined in the data file as the light
sources.

Remark. Spectra, intensities, and reflectances are all nonnegative quantities, which the mate-
rial of EE263 doesn’t address. So just ignore this while doing this problem. These issues can
be handled using the material of EE364a, however.

Solution.

a) Let

A =

 l1 l2 l3 · · · l20
m1 m2 m3 · · · m20

s1 s2 s3 · · · s20

 .

Now suppose that c = Ap is the cone response to the spectrum p and c̃ = Ap̃ is the cone
response to spectrum p̃. If the spectra are indistinguishable, then c = c̃ and Ap = Ap̃.
Solving the last expression for zero gives A(p − p̃) = 0. In other words, p and p̃ are
metamers if (p− p̃) ∈ νllspace(A).

b) In symbols, the problem asks if it is always possible to find nonnegative a1, a2, and a3
such that m1

m2

m3

 = Aptest = A
[
u v w

]  a1
a2
a3

 .

Let P =
[
u v w

]
and let B = AP . If B is invertible, then a1

a2
a3

 = B−1

m1

m2

m3

 .

However, B is not necessarily invertible. For example, if rank(A) < 3 or rank(P) < 3
then B will be singular. Physically, A is full rank if the L, M, and S cone responses
are linearly independent, which they are. The matrix P is full rank if and only if the
spectra of the primary lights are independent. Even if both A and P are full rank, B
could still be singular. Primary lights that generate an invertible B are called visually
independent. If B is invertible, a1, a2, and a3 exist that satisfy

Aptest = A
[
u v w

]  a1
a2
a3

 .

One or more of the ai may be negative in which case in the experimental setup described,
no match would be possible. However, in a more complicated experimental setup that
allows the primary lights to be combined either with each other or with ptest, a match
is always possible if B is invertible. In this case, if ai < 0, the ith light should be mixed
with ptest instead of the other primary lights. For example, suppose a1 < 0, a2, a3 ≥ 0
and b1 = −a1, then

A(b1u+ ptest) = A(a2v + a3w),

and each spectrum has a nonnegative weight.

2

c) Weights can be found as described above. The R, G, and B phosphors should be weighted
by 0.4226, 0.0987, and 0.5286 respectively.

d) Beth is right. Let r and r̃ be the reflectances of two objects and let p and p̃ be two
spectra. Let A be defined as before. Then, the objects will look identical under p if

A


r1 0 · · · 0
0 r2 · · · 0
...

... · · ·
...

0 0 · · · r20


︸ ︷︷ ︸

R

p = A


r̃1 0 · · · 0
0 r̃2 · · · 0
...

... · · ·
...

0 0 · · · r̃20


︸ ︷︷ ︸

R̃

p.

This is equivalent to saying (R − R̃)p ∈ νllspace(A). The objects will look different
under p̃ if, additionally, ARp̃ ̸= AR̃p̃ which means that (R − R̃)p̃ ̸∈ νllspace(A). The
following code shows how to find reflectances r1 and r2 for two objects such that the
objects will have the same color under tungsten light and will have different colors under
sunlight.

Here is Julia code solving this problem.

using LinearAlgebra
include("readclassjson.jl");
data = readclassjson("color_perception_data.json");
L_coefficients = data["L_coefficients"];
M_coefficients = data["M_coefficients"];
S_coefficients = data["S_coefficients"];
R_phosphor = data["R_phosphor"];
G_phosphor = data["G_phosphor"];
B_phosphor = data["B_phosphor"];
test_light = data["test_light"];
tungsten = data["tungsten"];
sunlight = data["sunlight"];

PART C

A = [L_coefficients’; M_coefficients’; S_coefficients’];
P = [R_phosphor G_phosphor B_phosphor]
B = A*P
@show weights = B\(A*test_light)

PART D

tung_L = L_coefficients .* tungsten
tung_M = M_coefficients .* tungsten
tung_S = S_coefficients .* tungsten
tungsten_LMS = [transpose(tung_L); transpose(tung_M); transpose(tung_S)]
nullspace_LMS = nullspace(tungsten_LMS)[:,1];

3

r1 = [0; 0.2; 0.3; 0.7; 0.7; 0.8; 0.8; 0.2; 0.9; 0.8;
0.2; 0.8; 0.9; 0.2; 0.8; 0.3; 0.8; 0.7; 0.2; 0.4];
r2 = r1 - nullspace_LMS;
t1 = zeros(20);
t2 = zeros(20);
for i in 1:20
t1[i] = r1[i]*tungsten[i];
t2[i] = r2[i]*tungsten[i];
end
@show color1_tungsten = A*t1
@show color2_tungsten = A*t2

s1 = zeros(20);
s2 = zeros(20);
for i in 1:20
s1[i] = r1[i]*sunlight[i];
s2[i] = r2[i]*sunlight[i];
end
@show color1_sunlight = A*s1
@show color2_sunlight = A*s2

4

3.300. Orthogonal complement of a subspace. If V is a subspace of Rn we define V⊥ as the
set of vectors orthogonal to every element in V, i.e.,

V⊥ = { x | ⟨x, y⟩ = 0, ∀y ∈ V } .

a) Verify that V⊥ is a subspace of Rn.

b) Suppose V is described as the span of some vectors v1, v2, . . . , vr. Express V and V⊥

in terms of the matrix V =
[
v1 v2 · · · vr

]
∈ Rn×r using common terms (range,

nullspace, transpose, etc.)

c) Show that every x ∈ Rn can be expressed uniquely as x = v+v⊥ where v ∈ V, v⊥ ∈ V⊥.
Hint: let v be the projection of x on V.

d) Show that dimV⊥ + dimV = n.

e) Show that V ⊆ U implies U⊥ ⊆ V⊥.

Solution.

a) We do not need to check all properties of a vector space to hold for V⊥, since many of
them hold only because V⊥ ⊆ Rn and the vector sum and scalar product definitions over
V⊥ and Rn are the same. We only need to verify the following properties:

• 0 ∈ V⊥.

• ∀x1, x2 ∈ V⊥ : x1 + x2 ∈ V⊥.

• ∀α ∈ R, ∀x ∈ V⊥ : αx ∈ V⊥.

The first property comes from the fact that ⟨0, y⟩ = 0 for all y ∈ Rn and therefore
0 ∈ V⊥. To verify the second property, we pick two arbitrary elements x1 and x2 in V⊥

and show that x1 + x2 ∈ V⊥. Let y be any vector in Rn. We have

⟨x1 + x2, y⟩ = ⟨x1, y⟩+ ⟨x2, y⟩
= 0 + 0 (since x1 ∈ V⊥ and x2 ∈ V⊥)

= 0,

and therefore x1 + x2 ∈ V⊥. Finally, we show that if α ∈ R and x ∈ V⊥ then αx ∈ V⊥.
If y ∈ Rn is arbitrary

⟨αx, y⟩ = α⟨x, y⟩
= α · 0 (since x ∈ V⊥)

= 0,

which by definition of V⊥, proves that αx ∈ V⊥ and we are done.

b) Expressing V in terms of the matrix V is easy. The span of vectors v1, v2, . . . , vr is simply
all linear combinations of the columns of V and therefore V = range(V). To express V⊥

in terms of V we use the trivial fact that x ∈ V⊥ if and only if x ⊥ vi for i = 1, . . . , r. (If

5

x ⊥ vi then x is orthogonal to any linear combination of the vi’s and hence any element
in V⊥. If x ∈ V⊥ then x is specially orthogonal to the vectors vi ∈ V⊥ for i = 1, . . . , r.)
Therefore x ∈ V⊥ if and only if vTi x = 0 for i = 1, . . . , r. In other words, using matrix
notation, x ∈ V⊥ if and only if 

vT1
vT2
...
vTr

x = 0

or V Tx = 0. Therefore V⊥ = null(V T).

c) Suppose that w1, w2, . . . , wk is an orthonormal basis for V. Consider the projection of x
on V, i.e.,

v := (wT
1 x)w1 + (wT

2 x)w2 + · · ·+ (wT
k x)wk.

Clearly, v ∈ V because it is a linear combination of the basis vectors wi. Now we show
that x− v (projection error) is an element in V⊥. To do this we only have to verify that
x− v ⊥ wi or wT

i (x− v) = 0 for i = 1, . . . , k. This is easy because

wT
i (x− v) = wT

i x− wT
i v

= wT
i x− (wT

i x)w
T
i wi since wT

i wj = 0 for i ̸= j

= 0 since wT
i wi = 1

Now that x − v ∈ V⊥, define v⊥ ∈ V⊥ as v⊥ = x − v so x = v + v⊥ with v ∈ V and
v⊥ ∈ V⊥. Now we show that the decomposition x = v + v⊥ is unique. Suppose that
there are two ways to express x as the sum of elements in V and V⊥, i.e., x = v1 + v⊥1
and x = v2 + v⊥2 where v1, v2 ∈ V and v⊥1 , v

⊥
2 ∈ V⊥. Therefore v1 + v⊥1 = v2 + v⊥2

or v1 − v2 = v⊥1 − v⊥2 . But v1 − v2 ∈ V (because v1, v2 ∈ V) and v⊥1 − v⊥2 ∈ V⊥

(because v⊥1 , v
⊥
2 ∈ V⊥), and by definition of V⊥ we should have (v1 − v2) ⊥ (v⊥1 − v⊥2)

or (v1 − v2)
T(v⊥1 − v⊥2) = 0. Now since v1 − v2 = v⊥1 − v⊥2 this implies that

(v1 − v2)
T(v1 − v2) = ∥v1 − v2∥2 = 0

and
(v⊥1 − v⊥2)

T(v⊥1 − v⊥2) = ∥v⊥1 − v⊥2 ∥2 = 0

so v1 = v2 and v⊥1 = v⊥2 or the decomposition is unique.

d) This follows from the previous part. In part (c) we showed that any vector in Rn can be
expressed as the sum of two elements in V and V⊥. Therefore, if {wi}ki=1 is a basis for V
and {ui}li=1 is a basis for V⊥, for arbitrary x ∈ Rn the scalars αi and βi exist such that

x =
k∑

i=1

αiwi +
l∑

i=1

βiui

or the set of vectors {w1, . . . , wk, u1, . . . , ul} span Rn. In fact, the vectors wi for i =
1, . . . , k are orthogonal to the vectors ui for i = 1, . . . , l by the definition of V⊥ and
are therefore independent. Since the set of vectors {w1, . . . , wk, u1, . . . , ul} span Rn and
w1, . . . , wk, u1, . . . , ul are independent we get

dimV + dimV⊥ = k + l = n.

6

e) To show that U⊥ ⊆ V⊥ we take an arbitrary element x ∈ U⊥ and prove that x ∈ V⊥.
Since x ∈ U⊥ then x ⊥ y for all y ∈ U . But V ⊆ U so we also have x ⊥ y for all y ∈ V.
By definition of V⊥, this is nothing but to state that x ∈ V⊥ and we are done.

3.430. Single sensor failure detection and identification. We have y = Ax, where A ∈ Rm×n

is known, and x ∈ Rn is to be found. Unfortunately, up to one sensor may have failed (but
you don’t know which one has failed, or even whether any has failed). You are given ỹ and
not y, where ỹ is the same as y in all entries except, possibly, one (say, the kth entry). If all
sensors are operating correctly, we have y = ỹ. If the kth sensor fails, we have ỹi = yi for all
i ̸= k.

The file one_bad_sensor.json, available on the course web site, defines A and ỹ (as A and
ytilde). Determine which sensor has failed (or if no sensors have failed). You must explain
your method, and submit your code.

For this exercise, you can use the matlab code rank([F g])==rank(F) to check if g ∈
range(F). (We will see later a much better way to check if g ∈ range(F).)

Solution. Let y(i) be the measurement vector y with the ith entry removed. Likewise, let
A(i) be the measurement matrix with the ith row of A removed. This corresponds to the
system without the ith sensor.

If the ith sensor is faulty, we will almost surely have y /∈ range(A) (unless the sensor
failure happens to give the same response yi as that predicted by A, which is highly unlikely).
However, once we remove its faulty measurement, we will certainly have y(i) ∈ range(A(i)).

To test if a vector z is in range(C), we can use matlab and compare rank([C z]) == rank(C).
If they are equal, z ∈ range(C). Otherwise rank([C z]) == rank(C) + 1. To find a faulty
sensor, we remove one row of A at a time, and use the above test.

The following matlab code solves the problem

using LinearAlgebra
include("readclassjson.jl")

data = readclassjson("one_bad_sensor.json")
A = data["A"]
ytilde = data["ytilde"]

if rank(A) == rank(hcat(A, ytilde))
println("No sensor fault")

else
m, n = size(A)
for i in 1:m

noti = 1:m .!= i
if rank(A[noti, :]) == rank(hcat(A[noti, :], ytilde[noti]))

println("Fault in sensor $i")
end

end
end

The 11th sensor is faulty.

7

3.680. Coin collector robot. Consider a robot with unit mass which can move in a frictionless two
dimensional plane. The robot has a constant unit speed in the y direction (towards north),
and it is designed such that we can only apply force in the x direction. We will apply a force
at time t given by fj for 2j − 2 ≤ t < 2j where j = 1, . . . , n, so that the applied force is
constant over time intervals of length 2. The robot is at the origin at time t = 0 with zero
velocity in the x direction.

There are 2n coins in the plane and the goal is to design a sequence of input forces for the
robot to collect the maximum possible number of coins. The robot is designed such that it
can collect the ith coin only if it exactly passes through the location of the coin (xi, yi). In
this problem, we assume that yi = i.

a) Find the coordinates of the robot at time t, where t is a positive integer. Your answer
should be a function of t and the vector of input forces f ∈ Rn.

b) Given a sequence of k coins (x1, y1), . . . , (x2n, y2n), describe a method to find whether
the robot can collect them.

c) For the data provided in robot_coin_collector.json, show that the robot cannot
collect all the coins.

d) Suppose that there is an arrangement of the coins such that it is not possible for the
robot to collect all the coins. Suggest a way to check if the robot can collect all but one
of the coins.

e) Run your method on data in robot_coin_collector.json and report which coin cannot
be collected. Report the input that results in collecting 2n− 1 coins. Plot the location
of the coins and the location of the robot at integer times.

Solution.

a) The second coordinate at time t is simply equal to t.

Consider A ∈ R2n×n such that

Aij =

{
1 j = ⌊ i+1

2 ⌋
0 Otherwise.

Then we will have Af = [f1, f1, f2, · · · , fn]. Similar to the mass/force example, the first
coordinate at time t will be equal to bTt Af where

bt = [t− 1

2
, · · · , 1

2
, 0, · · · , 0]T .

b) According to part a, the only possible time to collect the ith coin is at time t = yi = i.
Define li to be the first coordinate of the location of the robot at time t = i. From
part a, we see that

li = bTt Af.

Let B ∈ Rn×n be a matrix whose ith column is bi and define C = BTA. Then we will
have l = Cf .

Hence, we see that the necessary and sufficient condition to collect all the coins is that
x ∈ range(C). This can be simply examined with rank([C x])==rank(C).

8

c) The code to solve parts c,e can be find at the bottom.

d) In part b, we saw that l = Cf . We know that there exists a sequence of input forces f
such that all but one of the 2n equations are satisfied, but we don’t know which one.

Let x(i) be the location vector x with the ith entry removed. Likewise, let C(i) be the
transition matrix with the ith row of C removed. If we can collect all coins but the ith
one, then we will certainly have x(i) ∈ range(C(i)). We will loop over the coins and see
whether it’s possible to collect all coins but one.

e) The following code solves the problem:

using LinearAlgebra
using Plots

include("readclassjson.jl")
data = readclassjson("robot_coin_collector.json")

n = data["n"]
x = data["x"]

BT = zeros(2*n, 2*n)

for i = 1:2*n
BT[i,1:i] = i-1/2:-1:1/2

end

A = zeros(2*n,n)
for i=1:n

A[2*i-1, i], A[2*i, i] = 1, 1
end
C = BT*A

if rank([C x])==rank(C)
println("All coins can be collected!")

else
println("All coins cannot be collected!")

end

for i=1:2*n
xt = x[1:end .!= i]
Ct = C[1:end .!= i,:]
if rank([Ct xt])==rank(Ct)

println("The robot can collect all coins but ", i, "th, ")
print("and the input will be: \n")
global input = round.(Ct\xt, digits=4)
display(input)

9

end
end

plot(C*input, 1:2*n, color = "red", label = "Robot Trajectory")
scatter!(x, 1:2*n, color = "blue", label = "Coin Locations")

We see that all coins but the 7th can be collected and the associated input will be

f = [1.0000,−4.0000, 7.0000,−10.0000, 20.0000,−35.0000].

−10 −5 0 5 10 15 20 25
0

2

4

6

8

10

12

Figure 1: Location of the coins and the trajectory of the robot

4.630. Groups of equivalent statements. In the list below there are 11 statements about two
square matrices A and B in Rn×n.

a) range(B) ⊆ range(A).

b) there exists a matrix Y ∈ Rn×n such that B = Y A.

c) AB = 0.

d) BA = 0.

e) rank(
[
A B

]
) = rank(A).

f) range(A) ⊥ null(BT).

10

g) rank(

[
A
B

]
) = rank(A).

h) range(A) ⊆ null(B).

i) there exists a matrix Z ∈ Rn×n such that B = AZ.

j) rank(
[
A B

]
) = rank(B).

k) null(A) ⊆ null(B).

Your job is to collect them into (the largest possible) groups of equivalent statements. Two
statements are equivalent if each one implies the other. For example, the statement ‘A is
onto’ is equivalent to ‘null(A) = {0}’ (when A is square, which we assume here), because
every square matrix that is onto has zero nullspace, and vice versa. Two statements are not
equivalent if there exist (real) square matrices A and B for which one holds, but the other does
not. A group of statements is equivalent if any pair of statements in the group is equivalent.

We want just your answer, which will consist of lists of mutually equivalent statements;
we do not need any justification.

Put your answer in the following specific form. List each group of equivalent statements on
a line, in (alphabetic) order. Each new line should start with the first letter not listed above.
For example, you might give your answer as

a, c, d, h
b, i
e

f, g, j, k.

This means you believe that statements a, c, d, and h are equivalent; statements b and i are
equivalent; and statements f, g, j, and k are equivalent. You also believe that the first group
of statements is not equivalent to the second, or the third, and so on.

Solution. Let bi be the ith column of B.

range(B) ⊆ range(A) ⇔ every column of B is in the range of A
⇔ there exists a vector zi such that bi = Azi

⇔ there exists a matrix Z ∈ Rn×n such that B = AZ

⇔ rank(
[
A B

]
) = rank(A). (1)

This shows that statements a, e and i are equivalent.

null(A) ⊆ null(B) ⇔ null(A)⊥ ⊇ null(B)⊥

⇔ range(BT) ⊆ range(AT)

⇔ there exists a matrix Ỹ ∈ Rn×n such that BT = ATỸ

⇔ there exists a matrix Y ∈ Rn×n such that B = Y A

⇔ rank(
[
AT BT

]
) = rank(AT)

⇔ rank(

[
A
B

]
) = rank(A). (2)

11

This shows that statements b, g and k are equivalent.

range(A) ⊆ null(B) ⇔ for all z ∈ Rn, B(Az) = 0

⇔ BA = 0. (3)

This shows that statements d and h are equivalent.

range(A) ⊥ null(BT) ⇔ range(A) ⊆ null(BT)⊥

⇔ range(A) ⊆ range(B)

⇔ rank(
[
A B

]
) = rank(B). (4)

This shows that statements f and j are equivalent.
None of these groups of statements is equivalent to any other, or to c. This is demonstrated

by the following counterexamples.
Take

A =

[
1 0
0 0

]
, B =

[
0 0
1 0

]
.

Since AB = 0 but BA ̸= 0, then group (3) and statement c are not equivalent. Furthermore
since

rank(

[
A
B

]
) = rank(A) = rank(B) = 1

but rank([A B]) = 2, groups (2) and (1) are not equivalent. Groups (2) and (4) are not
either.

When A = B ̸= 0, null(A) = null(B) but AB = BA = A2 ̸= 0. Hence groups (2) and (3)
are not equivalent. Group (2) and statement c are not equivalent either.

Take

A = I, B =

[
0 0
1 0

]
.

Since rank([AB]) = rank(A) = 2 but rank(B) = 1, groups (1) and (4) are not equivalent.
Furthermore since BA ̸= 0 groups (1) and (3) are not equivalent. Since AB ̸= 0, group (1)
and statement c aren’t either.

In a similar fashion, taking

A =

[
0 0
1 0

]
, B = I,

shows that groups (3) and (4) are not equivalent and that statement c and group (4) aren’t
either.

Thus, the final answer is
a, e, i
b, g, k

c
d, h
f, j.

12

