
EE263 Homework 2 Solutions
Fall 2023

2.140. Communication over a wireless network with time-slots. We consider a network with
n nodes, labeled 1, . . . , n. A directed graph shows which nodes can send messages (directly) to
which other nodes; specifically, an edge from node j to node i means that node j can transmit
a message directly to node i. Each edge is assigned to one of K time-slots, which are labeled
1, . . . ,K. At time period t = 1, only the edges assigned to time-slot 1 can transmit a message;
at time period t = 2, only the edges assigned to time-slot 2 can transmit a message, and so
on. After time period t = K, the pattern repeats. At time period t = K + 1, the edges
assigned to time-slot 1 are again active; at t = K + 2, the edges assigned to time-slot 2 are
active, etc. This cycle repeats indefinitely: when t = mK + k, where m is an integer, and
k ∈ {1, . . . ,K}, transmissions can occur only over edges assigned to time-slot k. Although it
doesn’t matter for the problem, we mention some reasons why the possible transmissions are
assigned to time-slots. Two possible transmissions are assigned to different time-slots if they
would interfere with each other, or if they would violate some limit (such as on the total power
available at a node) if the transmissions occurred simultaneously. A message or packet can
be sent from one node to another by a sequence of transmissions from node to node. At time
period t, the message can be sent across any edge that is active at period t. It is also possible
to store a message at a node during any time period, presumably for transmission during a
later period. If a message is sent from node j to node i in period t, then in period t + 1 the
message is at node i, and can be stored there, or transmitted across any edge emanating from
node i and active at time period t+1. To make sure the terminology is clear, we consider the
very simple example shown below, with n = 4 nodes, and K = 3 time-slots.

1 2

34

k = 1k = 1

k = 2

k = 2

k = 3

In this example, we can send a message that starts in node 1 to node 3 as follows:

• During period t = 1 (time-slot k = 1), store it at node 1.

• During period t = 2 (time-slot k = 2), transmit it to node 2.

• During period t = 3 (time-slot k = 3), transmit it to node 4.

• During period t = 4 (time-slot k = 1), store it at node 4.

• During period t = 5 (time-slot k = 2), transmit it to node 3.

You can check that at each period, the transmission used is active, i.e., assigned to the
associated time-slot. The sequence of transmissions (and storing) described above gets the
message from node 1 to node 3 in 5 periods. Finally, the problem. We consider a specific
network with n = 20 nodes, and K = 3 time-slots, with edges and time-slot assignments

1

given in ts_data.json. The labeled graph that specifies the possible transmissions and the
associated time-slot assignments are given in a matrix A ∈ Rn×n, as follows:

Aij =

k if transmission from node j to node i is allowed, and assigned to time-slot k

0 if transmission from node j to node i is never allowed
0 i = j.

Note that we set Aii = 0 for convenience. This choice has no significance; you can store a
message at any node in any period. To illustrate this encoding of the graph, consider the
simple example described above. For this example, we have

Aexample =

0 0 0 1
2 0 1 0
0 0 0 2
0 3 0 0

 .

The problems below concern the network described in the data file and not the simple example
given above.

a) Minimum-time point-to-point routing. Find the fastest way to get a message that starts
at node 5, to node 18. Give your solution as a prescription ordered in time from t = 1
to t = T (the last transmission), as in the example above. At each time period, give
the transmission (as in ‘transmit from node 7 to node 9’) or state that the message is
to be stored (as in ‘store at node 13’). Be sure that transmissions only occur during the
associated time-slots. You only need to give one prescription for getting the message
from node 5 to node 18 in minimum time.

b) Minimum time flooding. In this part of the problem, we assume that once the message
reaches a node, a copy is kept there, even when the message is transmitted to another
node. Thus, the message is available at the node to be transmitted along any active
edge emanating from that node, at any future period. Moreover, we allow multi-cast:
if during a time period there are multiple active edges emanating from a node that has
(a copy of) the message, then transmission can occur during that time period across all
(or any subset) of the active edges. In this part of the problem, we are interested in
getting a message that starts at a particular node, to all others, and we attach no cost
to storage or transmission, so there is no harm is assuming that at each time period,
every node that has the message forwards it to all nodes it is able to transmit to. What
is the minimum time it takes before all nodes have a message that starts at node 7?

For both parts of the problem, you must give the specific solution, as well as a description of
your approach and method.

Solution. We first define the matrices A(1), A(2) and A(3), such that:

A
(k)
ij =

1 if Aij = k

1 if i = j

0 otherwise.

2

Thus, the matrix A(k) is the node adjacency matrix for time t = k. The significance of A(k)
ii = 1

is that packets are allowed to be stored at any node, instead of being transmitted. Formally
we would say that the graph has self loops at all nodes. Let B(1) = A(1). The (i, j) element
of B(1) is 1 if there is an active edge connecting node j to node i at time t = 1. We can also
interpret B(1)

ij as the number of paths that go from node j to node i in 1 time epoch. Similarly
let B(2) = A(2)A(1). We have that:

B
(2)
ij =

∑
k

A
(2)
ik A

(1)
kj

An A
(2)
ik A

(1)
kj element in the above summation will be nonzero if there is a valid length 2 path

from node j to node i via node k. Thus B
(2)
ij is the number of paths that go from node j to

node i in 2 time epochs. In general let us define:

B(t) = (A(r) · · ·A(2)A(1))(A(K) · · ·A(2)A(1))m

where t = mK+r and r < K. The element B(t)
ij tells us the number of allowed paths (including

transmission and storage of a message) that go from node j to node i in t time epochs.

a) Minimum-time point-to-point routing. In order to calculate the minimum time required
to get to node 18 from node 5, we just need to find the smallest value of k such that
B

(k)
(18,5) becomes nonnegative. This can be easily done by matrix multiplication. It was

found that Tmin = 8. Also, since B
(8)
(18,5) = 1, there is a unique minimum-time path from

node 5 to node 18. To reconstruct the minimum time path, we should start from the
destination node and work our way up to the starting node. We should first note that
B(Tmin) can be rewritten as:

B(Tmin) = A(Tmin)B(Tmin−1)

Now, if we want to find the penultimate point in the optimum path, we have to look at
the 18th row of A(Tmin) and the 5th column of B(Tmin−1). The nodes which correspond
to elements which are jointly nonzero on both of these vectors make possible choices for
the penultimate point. It doesn’t matter which one of those we choose as the second to
last point in the path. We can then repeat the above procedure, but this time for the
second to last point. We keep doing this till we reach node 5. By following this method,
we found that one (in this case unique) optimum path for the packet is:

• Start at node 5.

• During period t = 1, store it at node 5.

• During period t = 2, transmit it from node 5 to node 2.

• During period t = 3, store it at node 2.

• During period t = 4, transmit it from node 2 to node 9.

• During period t = 5, transmit it from node 9 to node 20.

• During period t = 6, store it at node 20.

• During period t = 7, store it at node 20.

3

• During period t = 8, transmit it from node 20 to node 18.

b) Minimum time flooding. To solve this problem, we just need to find the minimum value
of k such that the 7th column of B(k) has no zero components. It was found that in this
case Tflood = 9.

The following Julia code solves a general instance of this problem for any values of n and K.

using LinearAlgebra

include("readclassjson.jl")
ts_data = readclassjson("ts_data.json")
A = ts_data["A"]
K = ts_data["K"]
n = ts_data["n"]
At = zeros(n,n,K)

for k = 1:K
local temp = Matrix(1.0I, n, n)
for j in findall(i -> i==k,A)

temp[j] = 1
end
At[:,:,k] = temp

end
start = 5
dest = 18
t = 1
exit_flag = 0
B = Matrix(1.0I, n, n)
C = zeros(n,n,0)
while(exit_flag == 0)

for k = 1:K
global B = At[:,:,k]*B
global C = cat(C,B,dims=3)
if(B[dest,start]>0)

global exit_flag = 1
break

end
global t = t+1

end
end
t_min_path = t
display(t_min_path)
path = dest
new_dest = dest
for count = (t_min_path-1):-1:1

last_slot = rem(count,K)+1

4

row_dest = At[new_dest,:,last_slot]
col_start = C[:,start,count]
D = row_dest.*col_start
index = findall(j -> j>0,D)
global new_dest = index[1]
global path = [new_dest path]

end
path = [start path]
display(path)
flood_node = 7
t = 1
exit_flag = 0
B = Matrix(1.0I, n, n)
while(exit_flag == 0)

for k = 1:K
global B = At[:,:,k]*B
if(all(m -> m!=0,B[:,flood_node]))

global exit_flag = 1
break

end
global t = t+1

end
end
t_min_flood = t
display(t_min_flood)

We could also solve the problem for K = 3 and n = 20 “by hand”, by using the following
Julia code:

Import libraries & functions
using LinearAlgebra;
include("readclassjson.jl");

Load in data
ts_data = readclassjson("ts_data.json");
A = ts_data["A"];
n = ts_data["n"];

Create A1, A2, A3 matrices
A1 = diagm(ones(n)); # Self-loops
A1[A .== 1] .= 1; # A1_ij = 1 if A_ij = 1
A2 = diagm(ones(n)); # Self-loops
A2[A .== 2] .= 1; # A2_ij = 1 if A_ij = 2
A3 = diagm(ones(n)); # Self-loops
A3[A .== 3] .= 1; # A3_ij = 1 if A_ij = 3

Proceed through each step, one at a time, by hand

5

start = 5; dest = 18;
B1 = A1;
display(B1[dest, start]) # == 0
B2 = A2 * B1;
display(B2[dest, start]) # == 0
B3 = A3 * B2;
display(B3[dest, start]) # == 0
B4 = A1 * B3;
display(B4[dest, start]) # == 0
B5 = A2 * B4;
display(B5[dest, start]) # == 0
B6 = A3 * B5;
display(B6[dest, start]) # == 0
B7 = A1 * B6;
display(B7[dest, start]) # == 0
B8 = A2 * B7;
display(B8[dest, start]) # == 1, so Done!

Using the above code, the minimum time can be found. If we then wanted to reconstruct
the actual path, we should start from A(2) and B(7) and work all the way up to A(2) and A(1).
In order to find the minimum time flooding, we can use a similar code to the above. However,
at each time-step t we should check min(Bt(:,7)) and exit when that quantity is greater than
0. We mention one method that is wrong, but happens to give the correct answer for part (a).
The method works like this:

• First, find the shortest path from node 5 to node 18, ignoring the time-slots, using any
edge over which communication is allowed during some time-slot.

• Then, add a waiting period at each node (if needed), to make the path feasible.

In general, this method does not work; it does not give the shortest path from a source to
destination. Some comments: Several people used CS style methods, such as breadth-first
search or dynamic programming, to solve the problem. Of course, that’s fine, provided the
method was explained. But surely those of you who did this should have known the problem
was somehow related to the topics of EE263 . . . We were amazed that several people worked
out the problem by hand, by enumerating (and in some cases drawing) all possible paths. We
tried to make the problem instance big enough that this would be nearly impossible, but,
obviously, we failed. Next time, the problem instance will have 50 nodes, 200 edges, and say
5 time slots.

3.260. Halfspace. Suppose a, b ∈ Rn are two given points. Show that the set of points in Rn that
are closer to a than b is a halfspace, i.e.:

{x | ∥x− a∥ ≤ ∥x− b∥ } = { x | cTx ≤ d}

for appropriate c ∈ Rn and d ∈ R. Give c and d explicitly, and draw a picture showing a, b,
c, and the halfspace.

6

Solution. It is easy to see geometrically what is going on: the hyperplane that goes right
between a and b splits Rn into two parts; the points closer to a (than b) and the points closer
to b (than a). More precisely, the hyperplane is normal to the line through a and b, and
intersects that line at the midpoint between a and b. Now that we have the idea, let’s try
to derive it algebraically. Let x belong to the set of points in Rn that are closer to a than b.
Therefore ∥x− a∥ < ∥x− b∥ or ∥x− a∥2 < ∥x− b∥2 so

(x− a)T(x− a) < (x− b)T(x− b).

Expanding the inner products gives

xTx− xTa− aTx+ aTa < xTx− xTb− bTx+ bTb

or
−2aTx+ aTa < −2bTx+ bTb

and finally

(b− a)Tx <
1

2
(bTb− aTa). (1)

Thus (1) is in the form cTx < d with c = b − a and d = 1
2(b

Tb − aTa) and therefore we have
shown that the set of points in Rn that are closer to a than b is a halfspace. Note that the
hyperplane cTx = d is perpendicular to c = b− a.

a

cTx < d

cTx > d

cTx = d

b

7

3.350. Right inverses. This problem concerns the specific matrix

A =

−1 0 0 −1 1
0 1 1 0 0
1 0 0 1 0

 .

This matrix is full rank (i.e., its rank is 3), so there exists at least one right inverse. In fact,
there are many right inverses of A, which opens the possibility that we can seek right inverses
that in addition have other properties. For each of the cases below, either find a specific matrix
B ∈ R5×3 that satisfies AB = I and the given property, or explain why there is no such B. In
cases where there is a right inverse B with the required property, you must briefly explain how
you found your B. You must also attach a printout of your Julia script or Jupyter notebook
showing the verification that AB = I. (We’ll be very angry if we have to type in your 5 × 3
matrix into Julia to check it.) When there is no right inverse with the given property, briefly
explain why there is no such B.

a) The second row of B is zero.

b) The nullspace of B has dimension one.

c) The third column of B is zero.

d) The second and third rows of B are the same.

e) B is upper triangular, i.e., Bij = 0 for i > j.

f) B is lower triangular, i.e., Bij = 0 for i < j.

Solution.

a) The second row of B is zero. This means that the second column of A isn’t used in
forming AB. Let Ã be the matrix A with its second column removed, and let B̃ denote
the matrix B with its second row (which is supposed to be zero) removed. We have
ÃB̃ = AB = I, so B̃ is a right inverse of Ã. There is such a matrix if and only if Ã is
full rank, which it is. We can take B̃ = ÃT(ÃÃT)−1. Finally to construct B we simply
insert a zero second row, moving rows 2, 3, 4 down by one. This gives the matrix

B =

0 0 1

2
0 0 0
0 1 0
0 0 1

2
1 0 1

 .

There are other possible choices as well.

b) The nullspace of B has dimension one. This means that B has rank 2, so the rank of
AB is at most 2, which rules out the possibility that AB = I. So this is impossible.

c) The third column of B is zero. This implies B has a nullspace with dimension at least
one, so by part (b) above, this is impossible too.

8

d) The second and third rows of B are the same. Let B̃ denote B with one of the (identical)
rows 2 and 3 deleted. Then we have AB = ÃB̃, where Ã is obtained from the matrix
A by replacing its second column with the sum of its second and third columns, and
deleting its third column. Thus, we need to find a right inverse for Ã, provided it is full
rank. It is, so we can take B̃ = ÃT(ÃÃT)−1. Finally to construct B we simply insert a
second copy of the second row of B̃ as a new third row. This gives

B =

0 0 1

2
0 1

2 0
0 1

2 0
0 0 1

2
1 0 1

 .

This matrix also happens to be the pseudo-inverse of A, B = AT(AAT)−1, and some
of you noticed this immediately and used the pseudo-inverse to answer this question.
That’s a fine answer; it was our mistake to choose A so that the pseudo-inverse satisfied
this condition. In general, of course, it would not.

e) B is upper triangular, i.e., Bij = 0 for i > j. If B is upper triangular, then it has the
form [

B̃
0

]
,

where B̃ is square and upper triangular. If AB = I, then ÃB̃ = I, where Ã is the matrix
formed from the first 3 columns of A. Thus we have Ã = B̃−1. But the inverse of an
upper triangular matrix is also upper triangular, so unless Ã is upper triangular (and it
isn’t, in this case), we can’t possibly have ÃB̃ = I. So there is no such B in this case.

f) B is lower triangular, i.e., Bij = 0 for i < j. Let’s label the columns of B as

b1, b2 =

[
0

b̃2

]
, b3 =

 0
0

b̃3

 ,

where b̃2 ∈ R4 and b̃3 ∈ R3. To say that AB = I is the same as saying that Ab1 = e1,
Ab2 = e2, and Ab3 = e3, where e1, e2, e3 are the unit vectors. We can solve these
equations separately. The first equation is easy; the second we reduce to Ãb̃2 = e2,
where here Ã is A with its first column removed. The third is handled similarly. These
equations do have a solution; we get

B =

0 0 0
0 1

2 0
0 1

2 0
0 0 1
1 0 1

 .

Another way: we set it up as a set of 9 linear equations (one for each entry of AB = I)
in 5 + 4+ 3 = 12 variables. The variables are the first column of B (with 5 entries), the

9

nonzero part of the second column of B (with 4 entries), and the nonzero part of the
third second column of B (with 3 entries). We then attempt to solve these 9 equations
in 12 variables. Some equations immediately give us the B matrix coefficients, while the
others can be solved by inspection to obtain a rather simple matrix

B =

0 0 0
0 0 0
0 1 0
0 0 1
1 0 1

 .

3.390. Some true/false questions. Determine if the following statements are true or false. No
justification or discussion is needed for your answers. What we mean by “true” is that the
statement is true for all values of the matrices and vectors given. You can’t assume anything
about the dimensions of the matrices (unless it’s explicitly stated), but you can assume that
the dimensions are such that all expressions make sense. For example, the statement “A+B =
B + A” is true, because no matter what the dimensions of A and B (which must, however,
be the same), and no matter what values A and B have, the statement holds. As another
example, the statement A2 = A is false, because there are (square) matrices for which this
doesn’t hold. (There are also matrices for which it does hold, e.g., an identity matrix. But
that doesn’t make the statement true.)

a) If all coefficients (i.e., entries) of the matrix A are positive, then A is full rank.

b) If A and B are onto, then A+B must be onto.

c) If A and B are onto, then so is the matrix
[
A C
0 B

]
.

d) If A and B are onto, then so is the matrix
[
A
B

]
.

e) If the matrix
[
A
B

]
is onto, then so are the matrices A and B.

f) If A is full rank and skinny, then so is the matrix
[
A
B

]
.

Solution.

a) If all coefficients (i.e., entries) of the matrix A are positive, then A is full rank.

False. The matrix
[
1 1
1 1

]
has all entries positive and is singular, hence not full rank.

b) If A and B are onto, then A+B must be onto.

False. The 1×1 matrix A = 1 is full rank, and so is the matrix B = −1. But A+B = 0
(the 1× 1 zero), which is not onto.

10

c) If A and B are onto, then so is the matrix
[
A C
0 B

]
.

True. To show this matrix is onto, we need to show that we can solve the equations[
y1
y2

]
=

[
A C
0 B

] [
x1
x2

]
for any y1 and y2. (These are all vectors.) The bottom block row is y2 = Bx2. Using
the fact that B is onto, we can find at least one x2 such that y2 = Bx2. The top block
row is

y1 = Ax1 + Cx2,

which we can rewrite as
Ax1 = y1 − Cx2.

Using the fact that A is onto, we can find at least one x1 that satisfies this equation.
Now we’re done.

d) If A and B are onto, then so is the matrix
[
A
B

]
.

False. Let A and B both be the 1× 1 matrix 1. These are each onto, but
[
A
B

]
=

[
1
1

]
is not.

e) If the matrix
[
A
B

]
is onto, then so are the matrices A and B.

True. To say that
[
A
B

]
is onto means that for any vector y, we can find at least one x

that satisfies

y =

[
A
B

]
x.

Let’s use this to show that A and B are both onto. First let’s consider the equation
z = Au. We can solve this by finding an x that satisfies[

z
0

]
=

[
A
B

]
x.

In a similar way can solve the equation w = Bv for any vector w.

f) If A is full rank and skinny, then so is the matrix
[
A
B

]
.

True. Since the matrix A is skinny and full rank, its has zero nullspace: whenever we

have Ax = 0, we can conclude x = 0. The matrix
[
A
B

]
is also skinny, so to show it is

full rank we must show that it, too, has zero nullspace. To do this suppose that[
A
B

]
x = 0.

This means that Ax = 0 and Bx = 0. From the first, we conclude that x = 0. This

shows that
[
A
B

]
is full rank.

11

3.500. Digital circuit gate sizing. A digital circuit consists of a set of n (logic) gates, intercon-
nected by wires. Each gate has one or more inputs (typically between one and four), and one
output, which is connected via the wires to other gate inputs and possibly to some external
circuitry. When the output of gate i is connected to an input of gate j, we say that gate i
drives gate j, or that gate j is in the fan-out of gate i. We describe the topology of the circuit
by the fan-out list for each gate, which tells us which other gates the output of a gate connects
to. We denote the fan-out list of gate i as FO(i) ⊆ {1, . . . , n}. We can have FO(i) = ∅,
which means that the output of gate i does not connect to the inputs of any of the gates
1, . . . , n (presumably the output of gate i connects to some external circuitry). It’s common
to order the gates in such a way that each gate only drives gates with higher indices, i.e., we
have FO(i) ⊆ {i + 1, . . . , n}. We’ll assume that’s the case here. (This means that the gate
interconnections form a directed acyclic graph.)

To illustrate the notation, a simple digital circuit with n = 4 gates, each with 2 inputs, is
shown below. For this circuit we have

FO(1) = {3, 4}, FO(2) = {3}, FO(3) = ∅, FO(4) = ∅.

1

2

3

4

The 3 input signals arriving from the left are called primary inputs, and the 3 output signals
emerging from the right are called primary outputs of the circuit. (You don’t need to know
this, however, to solve this problem.)

Each gate has a (real) scale factor or size xi. These scale factors are the design variables
in the gate sizing problem. They must satisfy 1 ≤ xi ≤ xmax, where xmax is a given maximum
allowed gate scale factor (typically on the order of 100). The total area of the circuit has the
form

A =
n∑

i=1

aixi,

where ai are positive constants.
Each gate has an input capacitance C in

i , which depends on the scale factor xi as

C in
i = αixi,

where αi are positive constants.
Each gate has a delay di, which is given by

di = βi + γiC
load
i /xi,

where βi and γi are positive constants, and C load
i is the load capacitance of gate i. Note that

the gate delay di is always larger than βi, which can be intepreted as the minimum possible
delay of gate i, achieved only in the limit as the gate scale factor becomes large.

12

The load capacitance of gate i is given by

C load
i = Cext

i +
∑

j∈FO(i)

C in
j ,

where Cext
i is a positive constant that accounts for the capacitance of the interconnect wires

and external circuitry.
We will follow a simple design method, which assigns an equal delay T to all gates in the

circuit, i.e., we have di = T , where T > 0 is given. For a given value of T , there may or may
not exist a feasible design (i.e., a choice of the xi, with 1 ≤ xi ≤ xmax) that yields di = T for
i = 1, . . . , n. We can assume, of course, that T > maxi βi, i.e., T is larger than the largest
minimum delay of the gates.

Finally, we get to the problem.

a) Explain how to find a design x⋆ ∈ Rn that minimizes T , subject to a given area constraint
A ≤ Amax. You can assume the fanout lists, and all constants in the problem description
are known; your job is to find the scale factors xi. Be sure to explain how you determine
if the design problem is feasible, i.e., whether or not there is an x that gives di = T ,
with 1 ≤ xi ≤ xmax, and A ≤ Amax.

Your method can involve any of the methods or concepts we have seen so far in the
course. It can also involve a simple search procedure, e.g., trying (many) different values
of T over a range.

Note: this problem concerns the general case, and not the simple example shown above.

b) Carry out your method on the particular circuit with data given in the file gate_sizing_data.json

The fan-out lists are given as an n × n matrix F, with i, j entry one if j ∈ FO(i), and
zero otherwise. In other words, the ith row of F gives the fanout of gate i. The jth entry
in the ith row is 1 if gate j is in the fan-out of gate i, and 0 otherwise.

Comment. You do not need to know anything about digital circuits; everything you need to
know is stated above.

Solution.

a) We define the fanout matrix F as Fij = 1, if j ∈ FO(i), and Fij = 0 otherwise. The
matrix F is strictly upper triangular, since FO(i) ⊆ {i+ 1, . . . , n}.
Using the formulas given above, and di = T , we have

T = di

= βi + γi
C load
i

xi

= βi + γi
Cext
i +

∑
j∈FO(i)C

in
j

xi

= βi + γi
Cext
i +

∑
j∈FO(i) αjxj

xi
.

13

Multiplying by xi we get the equivalent equations

Txi = βixi + γi

Cext
i +

∑
j∈FO(i)

αjxj

 ,

which we can express in matrix form as

Tx = diag(β)x+ diag(γ)Cext + diag(γ)F diag(α)x.

Defining
K = diag(β) + diag(γ)F diag(α),

we can write the equations as

(TI −K)x = diag(γ)Cext,

a set of n linear equations in n unknowns. So this problem really does belong in EE263,
after all.

For choices of T for which TI −K is nonsingular, there is only one solution of this set
of linear equations,

x = (TI −K)−1 diag(γ)Cext.

If this x happens to satisfy 1 ≤ xi ≤ xmax, and A = aTx ≤ Amax, then it is a feasible
design. Our job, then, is to find the smallest T for which this occurs. If it occurs for no
T , then the problem is infeasible.

Let’s analyze the issue of singularity of TI−K. The matrix K is upper triangular, with
diagonal elements βi. So TI − K is upper triangular, with diagonal elements T − βi.
But these are all positive, by our assumption. So the matrix TI −K is nonsingular.

Thus, for each value of T (larger than maxi βi) there is exactly one possible choice of
gate sizes. Among the ones that are feasible, we have to choose the one corresponding
to the smallest value of T .

We can solve this problem by examing a reasonable range of values of T , and for each
value, finding x. We check whether x is feasible, by looking at mini xi, maxi xi, and
A. We take our final design as the one which is feasible, and has smallest value of T .
Alternatively, we can start with a value of T just a little bit larger than maxi βi, then
increase T until we find our first feasible x, which we take as our solution.

b) The following code generates x for a range of value of T , and plots mini xi, maxi xi, and
A, versus T .

using LinearAlgebra

include("readclassjson.jl")

data = readclassjson("gate_sizing_data.json")
n = data["n"]
F = data["F"]

14

xmin = data["xmin"]
xmax = data["xmax"]
a = data["a"]
gamma = data["gamma"]
beta = data["beta"]
alpha = data["alpha"]
Cext = data["Cext"]
Amax = data["Amax"]

deltaT=0.001;
Trange= maximum(beta) + deltaT:deltaT:10;

for i = Trange
K = diagm(beta) + diagm(gamma)*F*diagm(alpha);
x = (i*I(n)- K) \ diagm(gamma)*Cext;

if a’*x <= Amax && minimum(x) >= xmin && maximum(x) <= xmax
global T = i
break

end
end

print("T = ", T)

The output of the code is

T= 2.519

Figure 1 shows how the minimum and maximum gate sizes, and the total area, vary
with T , with the blue lines showing the limits. This shows that the feasible designs
correspond to 2.5194 ≤ T ≤ 5.088.

A few more comments about this problem:

• Since the matrix TI −K is upper triangular, we can solve for x very, very quickly. In
fact, if we use sparse matrix operations, we can easily compute x very quickly (seconds
or less) for a problem with n = 105 gates or more. You didn’t need to know this; we’re
just pointing it out for fun.

• The plots above show that as T increases, all of gate sizes decrease. This implies that
mini xi, maxi xi, and A all decrease as T increases. This means you can use a more
efficient bisection search to find the optimal T . Again, you didn’t need to know this;
we’re just pointing it out.

15

2 2.5 3 3.5 4 4.5 5 5.5 6
0

1

2

3

4

2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

2 2.5 3 3.5 4 4.5 5 5.5 6
0

100

200

300

400

500

T

m
a
x
i
x
i

m
in

i
x
i

A

Figure 1: maxi xi,mini xi, and A versus T .

16

