
EE263 Homework 1
Fall 2024

1. The chain rule for vector-valued functions. Let f : Rp → Rm and g : Rn → Rp be
vector-valued functions, and consider the composite function f ◦ g : Rn → Rm.

a) The chain rule for scalar-valued functions tells us that

∂fi(g1(x), . . . , gp(x))

∂xj
=

p∑
k=1

∂fi
∂gk(x)

∂gk(x)

∂xj
.

Use the chain rule for scalar-valued functions to show that

D(f ◦ g)(x) = (Df)(g(x))Dg(x).

This result is the chain rule for vector-valued functions.

b) Define f : R → R and g : Rn → R such that

f(z) =
√
z and g(x) = ∥x∥2.

Compute the derivatives of f and g, and use the chain rule for vector-valued functions
to compute the derivative of f ◦ g. Note that (f ◦ g)(x) = ∥x∥.

c) For a given matrix A ∈ Rm×n, define the functions f : Rm+n → R and g : Rn → Rm+n

such that

f

([
z1
z2

])
= zT1 z2 and g(x) =

[
x
Ax

]
.

Compute the derivatives of f and g, and use the chain rule for vector-valued functions
to compute the derivative of f ◦ g. Note that (f ◦ g)(x) = xTAx.

2. Matrix representation of linear systems. Consider the (discrete-time) linear dynamical
system

x(t+ 1) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) +D(t)u(t).

Find a matrix G such that 
y(0)
y(1)

...
y(N)

 = G


x(0)
u(0)

...
u(N)

 .

The matrix G shows how the output at t = 0, . . . , N depends on the initial state x(0) and the
sequence of inputs u(0), . . . , u(N).
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3. Communication over a wireless network with time-slots. We consider a network with
n nodes, labeled 1, . . . , n. A directed graph shows which nodes can send messages (directly) to
which other nodes; specifically, an edge from node j to node i means that node j can transmit
a message directly to node i. Each edge is assigned to one of K time-slots, which are labeled
1, . . . ,K. At time period t = 1, only the edges assigned to time-slot 1 can transmit a message;
at time period t = 2, only the edges assigned to time-slot 2 can transmit a message, and so
on. After time period t = K, the pattern repeats. At time period t = K + 1, the edges
assigned to time-slot 1 are again active; at t = K + 2, the edges assigned to time-slot 2 are
active, etc. This cycle repeats indefinitely: when t = mK + k, where m is an integer, and
k ∈ {1, . . . ,K}, transmissions can occur only over edges assigned to time-slot k. Although it
doesn’t matter for the problem, we mention some reasons why the possible transmissions are
assigned to time-slots. Two possible transmissions are assigned to different time-slots if they
would interfere with each other, or if they would violate some limit (such as on the total power
available at a node) if the transmissions occurred simultaneously. A message or packet can
be sent from one node to another by a sequence of transmissions from node to node. At time
period t, the message can be sent across any edge that is active at period t. It is also possible
to store a message at a node during any time period, presumably for transmission during a
later period. If a message is sent from node j to node i in period t, then in period t + 1 the
message is at node i, and can be stored there, or transmitted across any edge emanating from
node i and active at time period t+1. To make sure the terminology is clear, we consider the
very simple example shown below, with n = 4 nodes, and K = 3 time-slots.

1 2

34

k = 1k = 1

k = 2

k = 2

k = 3

In this example, we can send a message that starts in node 1 to node 3 as follows:

• During period t = 1 (time-slot k = 1), store it at node 1.

• During period t = 2 (time-slot k = 2), transmit it to node 2.

• During period t = 3 (time-slot k = 3), transmit it to node 4.

• During period t = 4 (time-slot k = 1), store it at node 4.

• During period t = 5 (time-slot k = 2), transmit it to node 3.

You can check that at each period, the transmission used is active, i.e., assigned to the
associated time-slot. The sequence of transmissions (and storing) described above gets the
message from node 1 to node 3 in 5 periods. Finally, the problem. We consider a specific
network with n = 20 nodes, and K = 3 time-slots, with edges and time-slot assignments
given in ts_data.json. The labeled graph that specifies the possible transmissions and the
associated time-slot assignments are given in a matrix A ∈ Rn×n, as follows:

Aij =


k if transmission from node j to node i is allowed, and assigned to time-slot k

0 if transmission from node j to node i is never allowed
0 i = j.

2



Note that we set Aii = 0 for convenience. This choice has no significance; you can store a
message at any node in any period. To illustrate this encoding of the graph, consider the
simple example described above. For this example, we have

Aexample =


0 0 0 1
2 0 1 0
0 0 0 2
0 3 0 0

 .

The problems below concern the network described in the data file and not the simple example
given above.

a) Minimum-time point-to-point routing. Find the fastest way to get a message that starts
at node 5, to node 18. Give your solution as a prescription ordered in time from t = 1
to t = T (the last transmission), as in the example above. At each time period, give
the transmission (as in ‘transmit from node 7 to node 9’) or state that the message is
to be stored (as in ‘store at node 13’). Be sure that transmissions only occur during the
associated time-slots. You only need to give one prescription for getting the message
from node 5 to node 18 in minimum time.

b) Minimum time flooding. In this part of the problem, we assume that once the message
reaches a node, a copy is kept there, even when the message is transmitted to another
node. Thus, the message is available at the node to be transmitted along any active
edge emanating from that node, at any future period. Moreover, we allow multi-cast:
if during a time period there are multiple active edges emanating from a node that has
(a copy of) the message, then transmission can occur during that time period across all
(or any subset) of the active edges. In this part of the problem, we are interested in
getting a message that starts at a particular node, to all others, and we attach no cost
to storage or transmission, so there is no harm is assuming that at each time period,
every node that has the message forwards it to all nodes it is able to transmit to. What
is the minimum time it takes before all nodes have a message that starts at node 7?

For both parts of the problem, you must give the specific solution, as well as a description of
your approach and method.

4. Affine functions. A function f : Rn → Rm is called affine if for any x, y ∈ Rn and any
α, β ∈ R with α+ β = 1, we have

f(αx+ βy) = αf(x) + βf(y).

(Without the restriction α+ β = 1, this would be the definition of linearity.)

a) Suppose that A ∈ Rm×n and b ∈ Rm. Show that the function f(x) = Ax+ b is affine.

b) Now the converse: Show that any affine function f can be represented as f(x) = Ax+ b,
for some A ∈ Rm×n and b ∈ Rm. (This representation is unique: for a given affine
function f there is only one A and one b for which f(x) = Ax+ b for all x.)

Hint. Show that the function g(x) = f(x)− f(0) is linear.
You can think of an affine function as a linear function, plus an offset. In some contexts,

affine functions are (mistakenly, or informally) called linear, even though in general they are
not. (Example: y = mx+ b is described as ‘linear’ in US high schools.)
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5. Quadratic extrapolation of a time series. We are given a series z up to time t. Using
a quadratic model, we want to extrapolate, or predict, z(t + 1) based on the three previous
elements of the series, z(t), z(t− 1), and z(t− 2). We’ll denote the predicted value of z(t+1)
by ẑ(t+ 1). More precisely, you will find ẑ(t+ 1) as follows.

a) Find the quadratic function f(τ) = a2τ
2+a1τ+a0 which satisfies f(t) = z(t), f(t−1) =

z(t−1), and f(t−2) = z(t−2). Then the extrapolated value is given by ẑ(t+1) = f(t+1).
Show that

ẑ(t+ 1) = c

 z(t)
z(t− 1)
z(t− 2)

 ,

where c ∈ R1×3, and does not depend on t. In other words, the quadratic extrapolator
is a linear function. Find c explicitly.

b) Use the following Julia code to generate a time series z:

t = collect(1:1000);
z = 5*sin.(t/10 .+ 2) + 0.1 * sin.(t) + 0.1*sin.(2*t .- 5);

Use the quadratic extrapolation method from part (a) to find ẑ(t) for t = 4, . . . , 1000.
Find the relative root-mean-square (RMS) error, which is given by(

(1/997)
∑1000

j=4 (ẑ(j)− z(j))2

(1/997)
∑1000

j=4 z(j)2

)1/2

.

6. Population dynamics. An ecosystem consists of n species that interact (say, by eating
other species, eating each other’s food sources, eating each other’s predators, and so on). We
let x(t) ∈ Rn be the vector of deviations of the species populations (say, in thousands) from
some equilibrium values (which don’t matter here), in time period (say, month) t. In this
model, time will take on the discrete values t = 0, 1, 2, . . .. Thus x3(4) < 0 means that the
population of species 3 in time period 4 is below its equilibrium level. (It does not mean the
population of species 3 is negative in time period 4.)

The population (deviations) follows a discrete-time linear dynamical system, which means
that x(t+1) is determined by x(t). That is, we can compute the entire sequence x(0), x(1), x(2), . . .
from x(0) by applying the iteration

x(t+ 1) = Ax(t).

We refer to x(0) as the initial population perturbation.
The questions below pertain to the specific case with n = 10 species, with matrix A given

in pop_dyn_data.json.

a) Suppose the initial perturbation is x(0) = e4 (meaning, we inject one thousand new
creatures of species 4 into the ecosystem at t = 0). How long will it take to affect the
other species populations? In other words, report a vector s, where si is the smallest t
for which xi(t) ̸= 0. (We have s4 = 0).
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b) Population control. We can choose any initial perturbation that satisfies |xi(0)| ≤ 1 for
each i = 1, . . . , 10. (We achieve this by introducing additional creatures and/or hunting
and fishing.) What initial perturbation x(0) would you choose in order to maximize
the population of species 1 at time t = 10? Explain your reasoning. Give the initial
perturbation, and using your selected initial perturbation, give x1(10) and plot x1(t)
versus t for t = 0, . . . , 40.
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