Lecture 3 Linear algebra review

- vector space, subspaces
- independence, basis, dimension
- range, nullspace, rank
- change of coordinates
- norm, angle, inner product

Vector spaces

a vector space or linear space (over the reals) consists of

- a set \mathcal{V}
- a vector $\operatorname{sum}+: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$
- a scalar multiplication : $\mathbf{R} \times \mathcal{V} \rightarrow \mathcal{V}$
- a distinguished element $0 \in \mathcal{V}$
which satisfy a list of properties
- $x+y=y+x, \quad \forall x, y \in \mathcal{V} \quad$ (+ is commutative)
- $(x+y)+z=x+(y+z), \quad \forall x, y, z \in \mathcal{V} \quad(+$ is associative $)$
- $0+x=x, \forall x \in \mathcal{V} \quad$ (0 is additive identity)
- $\forall x \in \mathcal{V} \exists(-x) \in \mathcal{V}$ s.t. $x+(-x)=0 \quad$ (existence of additive inverse)
- $(\alpha \beta) x=\alpha(\beta x), \quad \forall \alpha, \beta \in \mathbf{R} \quad \forall x \in \mathcal{V} \quad$ (scalar mult. is associative)
- $\alpha(x+y)=\alpha x+\alpha y, \quad \forall \alpha \in \mathbf{R} \quad \forall x, y \in \mathcal{V} \quad$ (right distributive rule)
- $(\alpha+\beta) x=\alpha x+\beta x, \quad \forall \alpha, \beta \in \mathbf{R} \quad \forall x \in \mathcal{V} \quad$ (left distributive rule)
- $1 x=x, \quad \forall x \in \mathcal{V}$

Examples

- $\mathcal{V}_{1}=\mathbf{R}^{n}$, with standard (componentwise) vector addition and scalar multiplication
- $\mathcal{V}_{2}=\{0\}$ (where $0 \in \mathbf{R}^{n}$)
- $\mathcal{V}_{3}=\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ where

$$
\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{k}\right)=\left\{\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k} \mid \alpha_{i} \in \mathbf{R}\right\}
$$

and $v_{1}, \ldots, v_{k} \in \mathbf{R}^{n}$

Subspaces

- a subspace of a vector space is a subset of a vector space which is itself a vector space
- roughly speaking, a subspace is closed under vector addition and scalar multiplication
- examples $\mathcal{V}_{1}, \mathcal{V}_{2}, \mathcal{V}_{3}$ above are subspaces of \mathbf{R}^{n}

Vector spaces of functions

- $\mathcal{V}_{4}=\left\{x: \mathbf{R}_{+} \rightarrow \mathbf{R}^{n} \mid x\right.$ is differentiable $\}$, where vector sum is sum of functions:

$$
(x+z)(t)=x(t)+z(t)
$$

and scalar multiplication is defined by

$$
(\alpha x)(t)=\alpha x(t)
$$

(a point in \mathcal{V}_{4} is a trajectory in \mathbf{R}^{n})

- $\mathcal{V}_{5}=\left\{x \in \mathcal{V}_{4} \mid \dot{x}=A x\right\}$ (points in \mathcal{V}_{5} are trajectories of the linear system $\dot{x}=A x$)
- \mathcal{V}_{5} is a subspace of \mathcal{V}_{4}

Independent set of vectors

a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is independent if

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}=0 \Longrightarrow \alpha_{1}=\alpha_{2}=\cdots=0
$$

some equivalent conditions:

- coefficients of $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}$ are uniquely determined, i.e.,

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}=\beta_{1} v_{1}+\beta_{2} v_{2}+\cdots+\beta_{k} v_{k}
$$

implies $\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \ldots, \alpha_{k}=\beta_{k}$

- no vector v_{i} can be expressed as a linear combination of the other vectors $v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{k}$

Basis and dimension

set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a basis for a vector space \mathcal{V} if

- $v_{1}, v_{2}, \ldots, v_{k} \operatorname{span} \mathcal{V}$, i.e., $\mathcal{V}=\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$
- $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is independent
equivalent: every $v \in \mathcal{V}$ can be uniquely expressed as

$$
v=\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}
$$

fact: for a given vector space \mathcal{V}, the number of vectors in any basis is the same
number of vectors in any basis is called the dimension of \mathcal{V}, denoted $\operatorname{dim} \mathcal{V}$ (we assign $\operatorname{dim}\{0\}=0$, and $\operatorname{dim} \mathcal{V}=\infty$ if there is no basis)

Nullspace of a matrix

the nullspace of $A \in \mathbf{R}^{m \times n}$ is defined as

$$
\mathcal{N}(A)=\left\{x \in \mathbf{R}^{n} \mid A x=0\right\}
$$

- $\mathcal{N}(A)$ is set of vectors mapped to zero by $y=A x$
- $\mathcal{N}(A)$ is set of vectors orthogonal to all rows of A
$\mathcal{N}(A)$ gives ambiguity in x given $y=A x$:
- if $y=A x$ and $z \in \mathcal{N}(A)$, then $y=A(x+z)$
- conversely, if $y=A x$ and $y=A \tilde{x}$, then $\tilde{x}=x+z$ for some $z \in \mathcal{N}(A)$

Zero nullspace

A is called one-to-one if 0 is the only element of its nullspace: $\mathcal{N}(A)=\{0\} \Longleftrightarrow$

- x can always be uniquely determined from $y=A x$ (i.e., the linear transformation $y=A x$ doesn't 'lose' information)
- mapping from x to $A x$ is one-to-one: different x 's map to different y 's
- columns of A are independent (hence, a basis for their span)
- A has a left inverse, i.e., there is a matrix $B \in \mathbf{R}^{n \times m}$ s.t. $B A=I$
- $\operatorname{det}\left(A^{T} A\right) \neq 0$
(we'll establish these later)

Interpretations of nullspace

suppose $z \in \mathcal{N}(A)$
$y=A x$ represents measurement of x

- z is undetectable from sensors - get zero sensor readings
- x and $x+z$ are indistinguishable from sensors: $A x=A(x+z)$
$\mathcal{N}(A)$ characterizes ambiguity in x from measurement $y=A x$
$y=A x$ represents output resulting from input x
- z is an input with no result
- x and $x+z$ have same result
$\mathcal{N}(A)$ characterizes freedom of input choice for given result

Range of a matrix

the range of $A \in \mathbf{R}^{m \times n}$ is defined as

$$
\mathcal{R}(A)=\left\{A x \mid x \in \mathbf{R}^{n}\right\} \subseteq \mathbf{R}^{m}
$$

$\mathcal{R}(A)$ can be interpreted as

- the set of vectors that can be 'hit' by linear mapping $y=A x$
- the span of columns of A
- the set of vectors y for which $A x=y$ has a solution

Onto matrices

A is called onto if $\mathcal{R}(A)=\mathbf{R}^{m} \Longleftrightarrow$

- $A x=y$ can be solved in x for any y
- columns of A span \mathbf{R}^{m}
- A has a right inverse, i.e., there is a matrix $B \in \mathbf{R}^{n \times m}$ s.t. $A B=I$
- rows of A are independent
- $\mathcal{N}\left(A^{T}\right)=\{0\}$
- $\operatorname{det}\left(A A^{T}\right) \neq 0$
(some of these are not obvious; we'll establish them later)

Interpretations of range

suppose $v \in \mathcal{R}(A), w \notin \mathcal{R}(A)$
$y=A x$ represents measurement of x

- $y=v$ is a possible or consistent sensor signal
- $y=w$ is impossible or inconsistent; sensors have failed or model is wrong
$y=A x$ represents output resulting from input x
- v is a possible result or output
- w cannot be a result or output
$\mathcal{R}(A)$ characterizes the possible results or achievable outputs

Inverse

$A \in \mathbf{R}^{n \times n}$ is invertible or nonsingular if $\operatorname{det} A \neq 0$
equivalent conditions:

- columns of A are a basis for \mathbf{R}^{n}
- rows of A are a basis for \mathbf{R}^{n}
- $y=A x$ has a unique solution x for every $y \in \mathbf{R}^{n}$
- A has a (left and right) inverse denoted $A^{-1} \in \mathbf{R}^{n \times n}$, with $A A^{-1}=A^{-1} A=I$
- $\mathcal{N}(A)=\{0\}$
- $\mathcal{R}(A)=\mathbf{R}^{n}$
- $\operatorname{det} A^{T} A=\operatorname{det} A A^{T} \neq 0$

Interpretations of inverse

suppose $A \in \mathbf{R}^{n \times n}$ has inverse $B=A^{-1}$

- mapping associated with B undoes mapping associated with A (applied either before or after!)
- $x=B y$ is a perfect (pre- or post-) equalizer for the channel $y=A x$
- $x=B y$ is unique solution of $A x=y$

Dual basis interpretation

- let a_{i} be columns of A, and \tilde{b}_{i}^{T} be rows of $B=A^{-1}$
- from $y=x_{1} a_{1}+\cdots+x_{n} a_{n}$ and $x_{i}=\tilde{b}_{i}^{T} y$, we get

$$
y=\sum_{i=1}^{n}\left(\tilde{b}_{i}^{T} y\right) a_{i}
$$

thus, inner product with rows of inverse matrix gives the coefficients in the expansion of a vector in the columns of the matrix

- $\tilde{b}_{1}, \ldots, \tilde{b}_{n}$ and a_{1}, \ldots, a_{n} are called dual bases

Rank of a matrix

we define the rank of $A \in \mathbf{R}^{m \times n}$ as

$$
\operatorname{rank}(A)=\operatorname{dim} \mathcal{R}(A)
$$

(nontrivial) facts:

- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$
- $\operatorname{rank}(A)$ is maximum number of independent columns (or rows) of A hence $\boldsymbol{\operatorname { r a n k }}(A) \leq \boldsymbol{\operatorname { m i n }}(m, n)$
- $\operatorname{rank}(A)+\operatorname{dim} \mathcal{N}(A)=n$

Conservation of dimension

interpretation of $\boldsymbol{\operatorname { r a n k }}(A)+\boldsymbol{\operatorname { d i m }} \mathcal{N}(A)=n$:

- $\operatorname{rank}(A)$ is dimension of set 'hit' by the mapping $y=A x$
- $\operatorname{dim} \mathcal{N}(A)$ is dimension of set of x 'crushed' to zero by $y=A x$
- 'conservation of dimension': each dimension of input is either crushed to zero or ends up in output
- roughly speaking:
- n is number of degrees of freedom in input x
$-\operatorname{dim} \mathcal{N}(A)$ is number of degrees of freedom lost in the mapping from x to $y=A x$
$-\operatorname{rank}(A)$ is number of degrees of freedom in output y

‘Coding’ interpretation of rank

- rank of product: $\boldsymbol{\operatorname { r a n k }}(B C) \leq \boldsymbol{\operatorname { m i n }}\{\boldsymbol{\operatorname { r a n k }}(B), \boldsymbol{\operatorname { r a n k }}(C)\}$
- hence if $A=B C$ with $B \in \mathbf{R}^{m \times r}, C \in \mathbf{R}^{r \times n}$, then $\boldsymbol{\operatorname { r a n k }}(A) \leq r$
- conversely: if $\boldsymbol{\operatorname { r a n k }}(A)=r$ then $A \in \mathbf{R}^{m \times n}$ can be factored as $A=B C$ with $B \in \mathbf{R}^{m \times r}, C \in \mathbf{R}^{r \times n}$:

- $\operatorname{rank}(A)=r$ is minimum size of vector needed to faithfully reconstruct y from x

Application: fast matrix-vector multiplication

- need to compute matrix-vector product $y=A x, A \in \mathbf{R}^{m \times n}$
- A has known factorization $A=B C, B \in \mathbf{R}^{m \times r}$
- computing $y=A x$ directly: $m n$ operations
- computing $y=A x$ as $y=B(C x)$ (compute $z=C x$ first, then $y=B z): r n+m r=(m+n) r$ operations
- savings can be considerable if $r \ll \min \{m, n\}$

Full rank matrices

for $A \in \mathbf{R}^{m \times n}$ we always have $\boldsymbol{\operatorname { r a n k }}(A) \leq \boldsymbol{\operatorname { m i n }}(m, n)$
we say A is full rank if $\boldsymbol{\operatorname { r a n k }}(A)=\boldsymbol{\operatorname { m i n }}(m, n)$

- for square matrices, full rank means nonsingular
- for skinny matrices ($m \geq n$), full rank means columns are independent
- for fat matrices ($m \leq n$), full rank means rows are independent

Change of coordinates

'standard' basis vectors in $\mathbf{R}^{n}:\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ where

$$
e_{i}=\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right]
$$

(1 in i th component)
obviously we have

$$
x=x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n}
$$

x_{i} are called the coordinates of x (in the standard basis)
if $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is another basis for \mathbf{R}^{n}, we have

$$
x=\tilde{x}_{1} t_{1}+\tilde{x}_{2} t_{2}+\cdots+\tilde{x}_{n} t_{n}
$$

where \tilde{x}_{i} are the coordinates of x in the basis $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$
define $T=\left[\begin{array}{llll}t_{1} & t_{2} & \cdots & t_{n}\end{array}\right]$ so $x=T \tilde{x}$, hence

$$
\tilde{x}=T^{-1} x
$$

(T is invertible since t_{i} are a basis)
T^{-1} transforms (standard basis) coordinates of x into t_{i}-coordinates
inner product i th row of T^{-1} with x extracts t_{i}-coordinate of x
consider linear transformation $y=A x, A \in \mathbf{R}^{n \times n}$
express y and x in terms of $t_{1}, t_{2} \ldots, t_{n}$:

$$
x=T \tilde{x}, \quad y=T \tilde{y}
$$

so

$$
\tilde{y}=\left(T^{-1} A T\right) \tilde{x}
$$

- $A \longrightarrow T^{-1} A T$ is called similarity transformation
- similarity transformation by T expresses linear transformation $y=A x$ in coordinates $t_{1}, t_{2}, \ldots, t_{n}$

(Euclidean) norm

for $x \in \mathbf{R}^{n}$ we define the (Euclidean) norm as

$$
\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}=\sqrt{x^{T} x}
$$

$\|x\|$ measures length of vector (from origin) important properties:

- $\|\alpha x\|=|\alpha|\|x\|$ (homogeneity)
- $\|x+y\| \leq\|x\|+\|y\|$ (triangle inequality)
- $\|x\| \geq 0$ (nonnegativity)
- $\|x\|=0 \Longleftrightarrow x=0$ (definiteness)

RMS value and (Euclidean) distance

root-mean-square (RMS) value of vector $x \in \mathbf{R}^{n}$:

$$
\operatorname{rms}(x)=\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}=\frac{\|x\|}{\sqrt{n}}
$$

norm defines distance between vectors: $\operatorname{dist}(x, y)=\|x-y\|$

Inner product

$$
\langle x, y\rangle:=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=x^{T} y
$$

important properties:

- $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle$
- $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$
- $\langle x, y\rangle=\langle y, x\rangle$
- $\langle x, x\rangle \geq 0$
- $\langle x, x\rangle=0 \Longleftrightarrow x=0$
$f(y)=\langle x, y\rangle$ is linear function $: \mathbf{R}^{n} \rightarrow \mathbf{R}$, with linear map defined by row vector x^{T}

Cauchy-Schwartz inequality and angle between vectors

- for any $x, y \in \mathbf{R}^{n},\left|x^{T} y\right| \leq\|x\|\|y\|$
- (unsigned) angle between vectors in \mathbf{R}^{n} defined as

$$
\theta=\angle(x, y)=\cos ^{-1} \frac{x^{T} y}{\|x\|\|y\|}
$$

thus $x^{T} y=\|x\|\|y\| \cos \theta$

special cases:

- x and y are aligned: $\theta=0 ; x^{T} y=\|x\|\|y\|$; (if $x \neq 0$) $y=\alpha x$ for some $\alpha \geq 0$
- x and y are opposed: $\theta=\pi ; x^{T} y=-\|x\|\|y\|$ (if $x \neq 0$) $y=-\alpha x$ for some $\alpha \geq 0$
- x and y are orthogonal: $\theta=\pi / 2$ or $-\pi / 2 ; x^{T} y=0$ denoted $x \perp y$
interpretation of $x^{T} y>0$ and $x^{T} y<0$:
- $x^{T} y>0$ means $\angle(x, y)$ is acute
- $x^{T} y<0$ means $\angle(x, y)$ is obtuse

$\left\{x \mid x^{T} y \leq 0\right\}$ defines a halfspace with outward normal vector y, and boundary passing through 0

$$
\left\{x \mid x^{T} y \leq 0\right\}
$$

