2.90. Matrices and signal flow graphs.

a) Find $A \in \mathbb{R}^{2 \times 2}$ such that $y = Ax$ in the system below:

\[
\begin{align*}
&x_1
\quad \rightarrow \quad 2
\quad \rightarrow \quad y_1 \\
&x_2
\quad \rightarrow \quad 0.5
\quad \rightarrow \quad +
\quad \rightarrow \quad y_2
\end{align*}
\]

b) Find $B \in \mathbb{R}^{2 \times 2}$ such that $z = Bx$ in the system below:

\[
\begin{align*}
&x_1
\quad \rightarrow \quad 2
\quad \rightarrow \quad 0.5
\quad \rightarrow \quad 2
\quad \rightarrow \quad 0.5
\quad \rightarrow \quad 2
\quad \rightarrow \quad 0.5
\quad \rightarrow \quad z_1 \\
&x_2
\quad \rightarrow \quad 2
\quad \rightarrow \quad 0.5
\quad \rightarrow \quad 2
\quad \rightarrow \quad 0.5
\quad \rightarrow \quad 2
\quad \rightarrow \quad 0.5
\quad \rightarrow \quad z_2
\end{align*}
\]

Do this two ways: first, by expressing the matrix B in terms of A from the previous part (explaining why they are related as you claim); and second, by directly evaluating all possible paths from each x_j to each z_i.

Solution.

a) By evaluating path gains we have

- Gain from x_1 to y_1. There is only one path with gain 2.
- Gain from x_1 to y_2. There is only one path with gain 0.5.
- Gain from x_2 to y_1. There are no paths and therefore the gain is 0.
- Gain from x_2 to y_2. There is only one path with gain 1.
and therefore
\[A = \begin{bmatrix} 2 & 0 \\ 0.5 & 1 \end{bmatrix}. \]

b) Clearly \(B = A^4 \). Carrying out the multiplication gives
\[B = \begin{bmatrix} 16 & 0 \\ 7.5 & 1 \end{bmatrix}. \]

Now by directly evaluating all possible path gains we get
- **Gain from \(x_1 \) to \(z_1 \).** There is only one path with gain \(2 \times 2 \times 2 \times 2 = 16 \)
- **Gain from \(x_1 \) to \(z_2 \).** There are 4 possible paths. These paths have gains 0.5, \(2 \times 0.5 \), \(2 \times 2 \times 0.5 \) and \(2 \times 2 \times 2 \times 0.5 \) that sum up to 7.5.
- **Gain from \(x_2 \) to \(z_1 \).** There are no paths and therefore the gain is 0.
- **Gain from \(x_2 \) to \(z_2 \).** There is only one path with gain 1.

and therefore we get the same \(B \) as expected.

\[+ + + + \]
\[x_1 \]
\[x_2 \]
\[z_2 \]
\[z_1 \]
\[.5 .5 .5 .5 \]
\[2 2 2 2 \]
\[+ + + + \]

2.160. **Some matrices from signal processing.** We consider \(x \in \mathbb{R}^n \) as a signal, with \(x_i \) the (scalar) value of the signal at (discrete) time period \(i \), for \(i = 1, \ldots, n \). Below we describe several transformations of the signal \(x \), that produce a new signal \(y \) (whose dimension varies). For each one, find a matrix \(A \) for which \(y = Ax \).

a) **2× up-conversion with linear interpolation.** We take \(y \in \mathbb{R}^{2n-1} \). For \(i \) odd, \(y_i = x_{(i+1)/2} \). For \(i \) even, \(y_i = (x_{i/2} + x_{i/2+1})/2 \). Roughly speaking, this operation doubles the sample rate, inserting new samples in between the original ones using linear interpolation.

b) **2× down-sampling.** We assume here that \(n \) is even, and take \(y \in \mathbb{R}^{n/2} \), with \(y_i = x_{2i} \).

c) **2× down-sampling with averaging.** We assume here that \(n \) is even, and take \(y \in \mathbb{R}^{n/2} \), with \(y_i = (x_{2i-1} + x_{2i})/2 \).

Solution.
a)
\[
A_{\text{lin-int}} = \begin{bmatrix}
1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
1/2 & 1/2 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1/2 & 1/2 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & 0 & 1/2 & 1/2 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1
\end{bmatrix}
\]
2.200. Quadratic extrapolation of a time series. We are given a series \(z \) up to time \(t \). Using a quadratic model, we want to extrapolate, or predict, \(z(t + 1) \) based on the three previous elements of the series, \(z(t) \), \(z(t - 1) \), and \(z(t - 2) \). We’ll denote the predicted value of \(z(t + 1) \) by \(\hat{z}(t + 1) \). More precisely, you will find \(\hat{z}(t + 1) \) as follows.

a) Find the quadratic function \(f(\tau) = a_2\tau^2 + a_1\tau + a_0 \) which satisfies \(f(t) = z(t) \), \(f(t - 1) = z(t - 1) \), and \(f(t - 2) = z(t - 2) \). Then the extrapolated value is given by \(\hat{z}(t + 1) = f(t + 1) \). Show that

\[
\hat{z}(t + 1) = c \begin{bmatrix} z(t) \\ z(t - 1) \\ z(t - 2) \end{bmatrix},
\]

where \(c \in \mathbb{R}^{1 \times 3} \), and does not depend on \(t \). In other words, the quadratic extrapolator is a linear function. Find \(c \) explicitly.

b) Use the following Julia code to generate a time series \(z \):

```julia
   t = collect(1:1000);
   z = 5*\sin.(t/10 .+ 2) + 0.1 * \sin.(t) + 0.1*\sin.(2*t .- 5);
```

Use the quadratic extrapolation method from part (a) to find \(\hat{z}(t) \) for \(t = 4, \ldots, 1000 \). Find the relative root-mean-square (RMS) error, which is given by

\[
\left(\frac{1}{997} \sum_{j=4}^{1000} (\hat{z}(j) - z(j))^2 \right)^{1/2} / \left(\frac{1}{997} \sum_{j=4}^{1000} z(j)^2 \right)^{1/2}.
\]

Solution.

a) Setting \(f(t) = z(t) \), \(f(t - 1) = z(t - 1) \) and \(f(t - 2) = z(t - 2) \) gives the following system of linear equations:

\[
\begin{align*}
a_2t^2 + a_1t + a_0 &= z(t) \\
a_2(t - 1)^2 + a_1(t - 1) + a_0 &= z(t - 1) \\
a_2(t - 2)^2 + a_1(t - 2) + a_0 &= z(t - 2)
\end{align*}
\]
with solution
\[
\begin{align*}
a_0 &= (0.5t^2 - 1.5t + 1)z(t) + (2t - t^2)z(t - 1) + (0.5t^2 - 0.5t)z(t - 2) \\
a_1 &= (1.5 - t)z(t) + (2t - 2)z(t - 1) + (0.5 - t)z(t - 2) \\
a_2 &= 0.5z(t) - z(t - 1) + 0.5z(t - 2).
\end{align*}
\]
Substituting in \(\hat{z}(t + 1) = a_2(t + 1)^2 + a_1(t + 1) + a_0 \) and simplifying, we get
\[
\hat{z}(t + 1) = 3z(t) - 3z(t - 1) + z(t - 2).
\]
Hence,
\[
c = \begin{bmatrix} 3 & -3 & 1 \end{bmatrix}.
\]
Observe that \(c \) does not depend on \(t \), but the coefficients \(a_0, a_1 \) and \(a_2 \) do. In other words, the quadratic extrapolator \(f \) varies between samples, but its value at \(t + 1 \) is always given by the same combination of \(z(t), z(t - 1) \) and \(z(t - 2) \).

b) The relative RMS error is 0.097. In order to get an idea of how good the approximation is, we plot the first 100 samples:

![Graph of \(z(t) \) and \(\hat{z}(t) \)]

\[3.260. \text{Halfspace.} \text{ Suppose } a, b \in \mathbb{R}^n \text{ are two given points. Show that the set of points in } \mathbb{R}^n \text{ that are closer to } a \text{ than } b \text{ is a halfspace, i.e.}:
\[
\{ x \mid \|x - a\| \leq \|x - b\| \} = \{ x \mid c^T x \leq d \}
\]
for appropriate \(c \in \mathbb{R}^n \) and \(d \in \mathbb{R} \). Give \(c \) and \(d \) explicitly, and draw a picture showing \(a, b, \) and the halfspace.

Solution. It is easy to see geometrically what is going on: the hyperplane that goes right between \(a \) and \(b \) splits \(\mathbb{R}^n \) into two parts; the points closer to \(a \) (than \(b \)) and the points closer to \(b \) (than \(a \)). More precisely, the hyperplane is normal to the line through \(a \) and \(b \), and intersects that line at the midpoint between \(a \) and \(b \). Now that we have the idea, let’s try
to derive it algebraically. Let \(x \) belong to the set of points in \(\mathbb{R}^n \) that are closer to \(a \) than \(b \). Therefore \(\|x - a\| < \|x - b\| \) or \(\|x - a\|^2 < \|x - b\|^2 \) so

\[
(x - a)^T(x - a) < (x - b)^T(x - b).
\]

Expanding the inner products gives

\[
x^T x - x^T a - a^T x + a^T a < x^T x - x^T b - b^T x + b^T b
\]

or

\[
-2a^T x + a^T a < -2b^T x + b^T b
\]

and finally

\[
(b - a)^T x < \frac{1}{2}(b^T b - a^T a).
\]

Thus (1) is in the form \(c^T x < d \) with \(c = b - a \) and \(d = \frac{1}{2}(b^T b - a^T a) \) and therefore we have shown that the set of points in \(\mathbb{R}^n \) that are closer to \(a \) than \(b \) is a halfspace. Note that the hyperplane \(c^T x = d \) is perpendicular to \(c = b - a \).

3.350. Right inverses. This problem concerns the specific matrix

\[
A = \begin{bmatrix}
-1 & 0 & 0 & -1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{bmatrix}.
\]
This matrix is full rank (i.e., its rank is 3), so there exists at least one right inverse. In fact, there are many right inverses of A, which opens the possibility that we can seek right inverses that in addition have other properties. For each of the cases below, either find a specific matrix $B \in \mathbb{R}^{5 \times 3}$ that satisfies $AB = I$ and the given property, or explain why there is no such B. In cases where there is a right inverse B with the required property, you must briefly explain how you found your B. You must also attach a printout of your Julia script or Jupyter notebook showing the verification that $AB = I$. (We’ll be very angry if we have to type in your 5×3 matrix into Julia to check it.) When there is no right inverse with the given property, briefly explain why there is no such B.

a) The second row of B is zero.

b) The nullspace of B has dimension one.

c) The third column of B is zero.

d) The second and third rows of B are the same.

e) B is upper triangular, i.e., $B_{ij} = 0$ for $i > j$.

f) B is lower triangular, i.e., $B_{ij} = 0$ for $i < j$.

Solution.

a) The second row of B is zero. This means that the second column of A isn’t used in forming AB. Let \tilde{A} be the matrix A with its second column removed, and let \tilde{B} denote the matrix B with its second row (which is supposed to be zero) removed. We have $\tilde{A} \tilde{B} = AB = I$, so \tilde{B} is a right inverse of \tilde{A}. There is such a matrix if and only if \tilde{A} is full rank, which it is. We can take $\tilde{B} = \tilde{A}^\top (\tilde{A} \tilde{A}^\top)^{-1}$. Finally to construct B we simply insert a zero second row, moving rows 2, 3, 4 down by one. This gives the matrix

$$B = \begin{bmatrix} 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \\ 1 & 0 & 1 \end{bmatrix}.$$

There are other possible choices as well.

b) The nullspace of B has dimension one. This means that B has rank 2, so the rank of AB is at most 2, which rules out the possibility that $AB = I$. So this is impossible.

c) The third column of B is zero. This implies B has a nullspace with dimension at least one, so by part (b) above, this is impossible too.

d) The second and third rows of B are the same. Let \tilde{B} denote B with one of the (identical) rows 2 and 3 deleted. Then we have $AB = \tilde{A} \tilde{B}$, where \tilde{A} is obtained from the matrix A by replacing its second column with the sum of its second and third columns, and deleting its third column. Thus, we need to find a right inverse for \tilde{A}, provided it is full.
rank. It is, so we can take \(\tilde{B} = \tilde{A}^T(\tilde{A}A^T)^{-1} \). Finally to construct \(B \) we simply insert a second copy of the second row of \(\tilde{B} \) as a new third row. This gives

\[
B = \begin{bmatrix}
0 & 0 & 1/2 \\
0 & 1/2 & 0 \\
0 & 1/2 & 0 \\
1 & 0 & 1
\end{bmatrix}.
\]

This matrix also happens to be the pseudo-inverse of \(A \), \(B = A^T(AA^T)^{-1} \), and some of you noticed this immediately and used the pseudo-inverse to answer this question. That’s a fine answer; it was our mistake to choose \(A \) so that the pseudo-inverse satisfied this condition. In general, of course, it would not.

e) \(B \) is upper triangular, \textit{i.e.}, \(B_{ij} = 0 \) for \(i > j \). If \(B \) is upper triangular, then it has the form

\[
\begin{bmatrix}
\tilde{B} \\
0
\end{bmatrix},
\]

where \(\tilde{B} \) is square and upper triangular. If \(AB = I \), then \(\tilde{A} \tilde{B} = I \), where \(\tilde{A} \) is the matrix formed from the first 3 columns of \(A \). Thus we have \(\tilde{A} = \tilde{B}^{-1} \). But the inverse of an upper triangular matrix is also upper triangular, so unless \(\tilde{A} \) is upper triangular (and it isn’t, in this case), we can’t possibly have \(\tilde{A} \tilde{B} = I \). So there is no such \(B \) in this case.

f) \(B \) is lower triangular, \textit{i.e.}, \(B_{ij} = 0 \) for \(i < j \). Let’s label the columns of \(B \) as

\[
b_1, \quad b_2 = \begin{bmatrix} 0 \\ \tilde{b}_2 \end{bmatrix}, \quad b_3 = \begin{bmatrix} 0 \\ 0 \\ \tilde{b}_3 \end{bmatrix},
\]

where \(\tilde{b}_2 \in \mathbb{R}^4 \) and \(\tilde{b}_3 \in \mathbb{R}^3 \). To say that \(AB = I \) is the same as saying that \(Ab_1 = e_1 \), \(Ab_2 = e_2 \), and \(Ab_3 = e_3 \), where \(e_1, e_2, e_3 \) are the unit vectors. We can solve these equations separately. The first equation is easy; the second we reduce to \(\tilde{A} \tilde{b}_2 = e_2 \), where here \(\tilde{A} \) is \(A \) with its first column removed. The third is handled similarly. These equations do have a solution; we get

\[
B = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1/2 & 0 \\
0 & 1/2 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{bmatrix}.
\]

Another way: we set it up as a set of 9 linear equations (one for each entry of \(AB = I \)) in \(5 + 4 + 3 = 12 \) variables. The variables are the first column of \(B \) (with 5 entries), the nonzero part of the second column of \(B \) (with 4 entries), and the nonzero part of the third second column of \(B \) (with 3 entries). We then attempt to solve these 9 equations in 12 variables. Some equations immediately give us the \(B \) matrix coefficients, while the
others can be solved by inspection to obtain a rather simple matrix

\[
B = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{bmatrix}.
\]