
EE263 Exam Solutions, November 2023

1. Real-time interpretation of the honeybee waggle dance. Upon discovering a
food source that is farther than 100 meters from its resident hive, a forager honeybee
will begin a cyclic “waggle” dance that follows the following form: (see figure 1a)

1. The forager bee walks in one direction along a linear path, “waggling” its abdomen
from side to side as it progresses along this path. (This portion of the dance is
referred to in the literature as the run or waggle run.)

2. The forager then turns either to the left or to the right, circling around to return
to the start of the waggle run. (This portion of the dance is referred to as the
return.)

3. The forager repeats the waggle run with the next return being to the opposite
side.

This dance is repeated anywhere from 1 to ≥ 100 times, alternating between a right and
left return after each run. Surrounding forager bees hug close to the dancing forager
bee in order to feel out the pattern of the bee’s dance.

(a) The run angle θ, the run
starting time t0, and the run fin-
ishing time tf of a honeybee wag-
gle dance.

(b) The angle to the food source
θ with respect to the sun and the
distance to the food source, r.

Figure 1: The angle to the food source with respect to the sun, with the hive at the
vertex, is equivalent to the angle, θ, of the waggle run; the distance to the food source,
r, is a linear function of the run duration, τ = tf − t0.
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This dance encodes geographical information about the location and quality of an
identified food source (see Figure 1b). When the waggle dance is performed on a vertical
surface (e.g., inside a vertically situated hive), the angle θ from the top (upwards) of
the hive to the linear path of the waggle run is equal to the angle from the sun to the
located food source with the hive being the vertex of this angle; the duration τ = tf−t0
of the waggle has a linear relationship with the distance r from the hive to the located
food source.

Thus, when a forager bee locates a food source and returns to the hive, its waggle
dance signals to the honeybees that follow its dance two pieces of information:

• θ(t) is the angle to the located food source with respect to the location of the sun
at time t; and

• r is the distance to the food source in kilometers.

Furthermore, r can be approximately expressed as

r ≈ ξ0 + ξ1τ, (1)

where ξ0 and ξ1 are fit coefficients, and τ = tf − t0 is the duration of the run in the
forager bee’s waggle dance.

a) We will start by first fitting the coefficients ξ0 and ξ1 in the linear approximation
of r. In the data file waggle_dance_data.json, you will use the vectors tau and
r to fit the coefficients. The elements in tau are measurements that represent
durations (in seconds) of waggle runs from m different dances, and the elements
in r are the corresponding distances (in kilometers) to the different food sources.
Choose ξ0 and ξ1 to minimize

m∑
i=1

(ξ0 + ξ1τi − ri)
2

b) Next, we will use least squares to find the equation for the line y = β0 + β1x for
a particular waggle dance. In waggle_dance_data.json, you will see additional
vectors:

• x, which represents the x-coordinates (x(1), . . . , x(n)) at each time step t =
1, . . . , n of a honeybee that is performing a waggle dance;

• y, which represents the y-coordinates (y(1), . . . , x(n)) at each time step t =
1, . . . , n of the honeybee’s waggle dance;

• w, which is a binary variable, denoting whether at time step t the honeybee
is on the waggle run (w(t) = 1) or return (w(t) = 0). In this particular
dance, you will see a waggle run, followed by a return to the left, followed
by a second waggle run, and finally, a return to the right. Thus, there are
only 2 waggle runs in this particular dance.
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To find the line along which the honeybee is waggling, you will need to use least
squares only on those points where the bee is on a waggle run. Specifically, choose
β0 and β1 to minimize ∑

t|w(t)=1

(β0 + β1x(t)− y(t))2

Report your fitted equation ŷ = β0+β1x. Plot the fitted line, and all of the points
(x(t), y(t)), t = 1, . . . , n, with points on the waggle run in one color, and points
on the return in another color.

c) Using the data of our particular waggle dance, compute the average duration τ
of this particular dance’s waggle runs. To do this, you will: measure the length
(in frames) of both waggle runs present in the dance; take the average; and then
convert the length from frames to seconds. The framerate of the time steps is 30
frames per second; that is, 1 time step forward is equivalent to 1/30 of a second.

d) Now, using your results from parts a), b) and c) (and a little bit of trigonometry),
provide an estimate of the angle θ̂ between the sun and the food source described
by this honeybee’s waggle dance (this will be the same angle between the vector
along which the bee is waggling and the top of the hive, or the positive y-axis),
as well as the approximate distance (in kilometers) to the food source.

Hint: Don’t forget to take into account which way the honeybee is moving along
the line you computed in part c): the angle you are aiming to compute is between
the vector that represents the forward direction of the bee’s movement along the
line and the positive y-axis. If you don’t take that into account, your estimate
will be off by 180 degrees or π radians.

e) Using the same data in part b), use recursive least squares to create a real-time
estimate of the line along which the honeybee is waggling at each time step; that
is, for each time step t, you should have an equation y = β0,t + β1,tx that is fit to
all of the points seen so far. As before, you should only be fitting to points that are
on the waggle run. This means that your estimate of the line will not be updated
when the bee is on the return.

At each time step, use trigonometry to provide a real-time estimate of the angle
between the sun and the located food source. Plot your real-time estimated angle
θ̂t against the time step t. In your plot, include a horizontal line that represents
the estimated angle θ̂ you calculated in part c). Do the recursively estimated
angles θ̂t converge to your estimate θ̂ in part d)?

Solution.

a) Let r ∈ Rm be the vector of distances given to us in r; let T ∈ Rm×2 be the data
matrix given by
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T =


1 τ1
1 τ2
...

...
1 τm

 ; (2)

and let ξ = [ξ0, ξ1]
T ∈ R2 be our parameter vector.

To fit the linear approximation, we are solving the least squares problem given by

minimize
ξ

∥r − Tξ∥22, (3)

the solution to which is ξ̂ = (T TT )−1T T r, provided T is full rank.

Using Julia, we find our fitted coefficients are

ξ̂0 = −0.5677, ξ̂1 = 1.2529. (4)

The Julia code to accomplish this is shown below:

include("../code/readclassjson.jl")

data = readclassjson("../data/waggle_dance_data.json")
m = data["m"]
r = data["r"]
tau = data["tau"]

T = reduce(hcat, [ones(m), tau]) # data matrix
xi = T \ r # Least Squares Solution

display(xi)

b) This problem is similar to part a), except we first need to filter out all of the
points (x(t), y(t)) which are not on the waggle run.

Let x̃1, . . . , x̃k be all of the points x(t) such that w(t) = 1. Similarly, let ỹ1, . . . , ỹk
be all of the points y(t) such that w(t) = 1. Note that order is preserved in these
new notations; that is, for x̃i, x̃j, if i < j, then x̃i occurred before x̃j in the original
time series.

Then, let ỹ ∈ Rk be the vector composed of the points ỹi, i = 1, . . . , k. Let X̃ ∈
Rk×2 be our data matrix, where the first column of X̃ is the all-ones vector and the
second column of X̃ are our x̃i, i = 1, . . . , k values. Finally, let β = [β0, β1]

T ∈ R2

be our parameter vector.
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Then, we aim to solve the least squares problem

minimize
β

∥ỹ − X̃θ∥22, (5)

the solution to which is given by β̂ = (X̃T X̃)−1X̃T ỹ.

Using Julia, we find our fitted coefficients are

β0 = 104.4739, β1 = −0.0197. (6)

We plot the fitted line (along with an arrow demonstrating the honeybee’s direc-
tion of motion) and all of the points in the waggle dance below:

Figure 2: The fitted line ŷ = β0 + β1x along with the points of the waggle dance. Red
points signify the waggle run; blue points signify the return. The direction of the dance
was determined by looking at the progression of the points over time.

The Julia code is shown below:

using Plots

include("../code/readclassjson.jl")

data = readclassjson("../data/waggle_dance_data.json")
n = data["n"]
t = data["t"]
x = data["x"]
y = data["y"]
w = data["w"]

k = sum(w) # number of points on waggle run
x_run = x[w .== 1] # x-coords on waggle run
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y_run = y[w .== 1] # y-coords on waggle run
x_return = x[w .== 0] # x-coords on return
y_return = y[w .== 0] # y-coords on return

X = reduce(hcat, [ones(k), x_run]) # data matrix
beta = X \ y_run # Least Squares solution
display(beta)

# First Waggle Run is from t = 1 to t = 65 (see Part C)
direction = (x[65] - x[1]) > 0 ? :head : :tail

# Plot the fitted line and points of the dance
i = [minimum(x) - 10, maximum(x) + 10]
line = (beta[2] .* i) .+ beta[1]
scatter(x_run, y_run, mc=:red, aspect_ratio=:equal, label="Waggle Run")
scatter!(x_return, y_return, mc=:blue, label="Return")
plot!(i, line, arrow=(:closed, direction), color=:black, label="Fit Line")
savefig("../graphics/fitted_waggle_run.png")

c) The two waggle runs start at time steps t = 1 and t = 110, respectively, and end
at time steps t = 65 and t = 203. Therefore, the duration of the two dances, in
frames, are 64 frames and 93 frames. Therefore, on average, the honeybee spends
78.5 frames on the waggle run. Converting this to seconds (using the framerate
of 30 FPS), this means the honeybee spends, on average, 2.6167 seconds on the
waggle run.

The Julia code is shown below:

include("../code/readclassjson.jl")

data = readclassjson("../data/waggle_dance_data.json")
w = data["w"]
FPS = 30 # Framerate = 30 FPSs

start_frames = [1, findall(>(0), diff(w))[1] + 1] # Frames for start of dance
end_frames = findall(<(0), diff(w)) # Frames for end of dance

avg_duration_frames = sum(end_frames - start_frames) / 2 # Avg. of 2 dances
avg_duration_secs = avg_duration_frames / FPS # Convert to seconds
display(avg_duration_secs)

Note: Another possible answer is that the duration of the dances are 65 frames
and 94 frames, respectively, in which case the answer will be 2.65 seconds on the
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waggle run. (Because this isn’t a signals processing course, and we didn’t describe
how the data was recorded, either of these answers is acceptable.)

d) The line that we fit to the waggle run in part b) has a slope of β1 = −0.0197.
Therefore, the angle between the positive x-axis and this line will be tan−1(β1) =
−0.0197 rads, or −1.1286 degrees.

However, the honeybee was walking from right to left: this means that we need
to add π rads or 180 degrees, giving us 3.1219 rads, or 178.8714 degrees.

Finally, this angle that we currently have is counterclockwise from the positive
x-axis. We need it to be measured from the Sun, which is at the positive y-axis.
Therefore, we subtract π

2
rads or 90 degrees, to get our final estimate of the angle

θ̂ from the Sun to the located Food Source:

θ̂ = tan−1(β1) +
π

2
= 1.5511 rads, (7)

or 88.8702 degrees counterclockwise from the Sun.

Using our results from part a) and part c), we then compute the approximate
distance to the food source from the hive to be

r ≈ ξ̂0 + ξ̂1τ = −0.5677 + 1.2529 · 2.6167 = 2.7106 kilometers. (8)

Note: In line with the alternate possible answer from part c), another acceptable
answer for the approximate distance is r = 2.7524 kilometers.

The Julia code is shown below:

xi = [-0.5676571122194828, 1.2528547203255607] # Least Squares Solution from Part A
beta = [ 104.47393303570679, -0.019721609390038978] # Least Squares Solution from Part B
tau = 2.6166666666666667 # Avg. Duration from Part C

# Computing Angle
theta_rads = atan(beta[2]) + (pi/2)
theta_degs = theta_rads * (180/pi)
print("Angle from the Sun: \n")
print(theta_rads, " radians counterclockwise, or\n")
print(theta_degs, " degrees counterclockwise\n\n")

# Computing Distance
r = xi[1] + xi[2] * tau
print("Distance from the Hive:\n", r, " kilometers")
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e) From the recursive estimation slides (lecture 14) and our earlier results, we can
formulate the following algorithm to provide a real-time estimate θ̂t of the angle
between the sun and the located food source:

Given: (xi, yi, wi), i = 1, . . . , n

P ← 0 ∈ Rn×n

q ← 0 ∈ Rn

for i = 1, . . . , n :

if wi = 1: (i.e., (xi, yi) is on the waggle run)

x̃i ←
[
1
xi

]
P ← P + x̃ix̃

T
i

q ← q + yix̃i

if P is invertible:
βi ← P−1q

θ̂i ← tan−1(βi,1) +
π

2

Below is our plot, demonstrating that the recursive estimates θ̂t do converge to
the full least squares estimate θ̂ from part d).

Figure 3: The recursive least squares estimate θ̂t plotted over time steps t.

The Julia code to accomplish this is shown below:

using LinearAlgebra, Plots

include("../code/readclassjson.jl")
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data = readclassjson("../data/waggle_dance_data.json")
n = data["n"]
t = data["t"]
x = data["x"]
y = data["y"]
w = data["w"]
full_ls_theta = 1.5510772736616003

P = zeros(2, 2)
q = zeros(2)
theta = 0.0
angles = Float64[]
for i in t

if w[i] == 1
x_tilde = [1, x[i]]
global P = P + (x_tilde * x_tilde’)
global q = q + (y[i] * x_tilde)
if rank(P) == 2

beta = P \ q
global theta = atan(beta[2]) + (pi/2)

end
end
push!(angles, theta)

end

plot(t, angles, label="Recursive L.S. Estimate")
hline!([full_ls_theta], ls=:dash, lc=:red, label="Full L.S. Estimate")
xlabel!("Time Steps")
ylabel!("Angle (Radians)")
savefig("../graphics/recursive_convergence.png")

Problem & Data Courtesy of: G. Holt, P. Murray, D. Grimsman and S. Warnick, “Devel-
oping Ecological Sensors for Real-Time Interpretation of Honeybee Communication,"
2022 IEEE Conference on Control Technology and Applications (CCTA), Trieste, Italy,
2022, pp. 69-75, doi: 10.1109/CCTA49430.2022.9966064.

2. There and back again. A unit mass moves in 1-dimension. It starts at position
0, with velocity 0, at time t = 0. We are going to move it from its starting position
to position 1, and then move it back to the origin. Ideally we would like it to reach
position 1 at time T1 and reach the origin again at time T2.

The force acting on it during the interval j−1 ≤ t < j is given by xj for j = 1, . . . , T2.
Let y1 be the position of the mass at time T1 and y2 be the position of the mass at
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time T2. We will use parameters T1 = 10 and T2 = 20.

a) Let

y =

[
y1
y2

]
Find the matrix A such that y = Ax.

b) Find the minimum norm sequence of forces x which moves the mass so that at
time T1 its position is 1, and at time T2 its position is 0 again. Plot x (that is
plot xj versus time j).

c) Using the optimal sequence of forces you found in the previous part, compute the
position and velocity of the mass as a function of time. Plot these.

d) Now we would like to trade-off the two objectives

J1 =

T2∑
j=1

∥xj∥2 J2 = (y1 − 1)2 + y22

Compute the optimal trade-off curve, and plot J1 against J2.

e) Find the sequence of forces x which has the smallest norm and achieves a position
error J2 of less than or equal to 0.2. Plot x, and the corresponding position and
velocity of the mass as a function of time.

Solution.

a) We will use the following equations of motion:

vn = vn−1 + ant pn = pn−1 + vn−1t+
1
2
ant

2

Where v is velocity, p is position, a is acceleration and t is time. Combining
equations 1 and 2, using t = 1 and an = xn we obtain the following equation for
pn and vn:

vn =
n∑

i=1

xi pn =
n∑

i=1

((n− 1) + 1
2
)xi

Since y1 = p10 and y2 = p20,

A =

[
10− 1

2
10− 3

2
· · · 1

2
0 · · · 0

20− 1
2

20− 3
2
· · · · · · · · · 3

2
1
2

]
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b) The min norm solution is given by xleastnorm = AT(AAT)−1y. It is plotted below.

c) Using the aforementioned formulas for pn and vn we will complete and plot the
values using the least norm solution we found in part b).

d) We will re-write the two objective functions as:

J1 =

T2∑
j=1

∥xj∥2 = ∥x∥2 J2 = (y1−1)2+y22 =

∥∥∥∥[ y1y2
]
−

[
1
0

]∥∥∥∥2

=

∥∥∥∥Ax− [
1
0

]∥∥∥∥2

This is a multi-objective least squares problem. We must minimize J1+µJ2. The
tradeoff curve is displayed below.
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e) Since there is a tradeoff between J1 and J2, we will set J2 to be as close to 0.2
as possible since this will minimize J1. Choosing µ to be around 58.2 gives us
J1 = 0.00391 and J2 = 0.1996. We use this value of µ to minimize J1 + µJ2 and
obtain x. The plots of x, position and velocity are below.

The complete Julia code for all the parts is shown below:

#part b

using LinearAlgebra, Plots
y = [1, 0]
A = [10-(1/2) 10-(3/2) 10-(5/2) 10-(7/2) 10-(9/2) 10-(11/2) 10-(13/2) 10-(15/2)

10-(17/2) 10-(19/2) 0 0 0 0 0 0 0 0 0 0; 20-(1/2) 20-(3/2) 20-(5/2) 20-(7/2)
20-(9/2) 20-(11/2) 20-(13/2) 20-(15/2) 20-(17/2) 20-(19/2) 20-(21/2) 20-(23/2)
20-(25/2) 20-(27/2) 20-(29/2) 20-(31/2) 20-(33/2) 20-(35/2) 20-(37/2) 20-(39/2)]

x_ln = A’*pinv(A*A’)*y
plot(x_ln, label="x least norm")

#part c

v = zeros(20)
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p = zeros(20)
for i in range(2,length(x_ln))

v[i] = sum(x_ln[1:i])
end
for i in range(2, length(x_ln))

p[i] = p[i-1] + v[i-1] + x_ln[i]/2
end
p1 = plot(v, label="least norm velocity")
p2 = plot(p, label ="least norm position")
plot(p1, p2, layout=(1, 2), size=(1000, 300))

#part d

J1 = zeros(50)
J2 = zeros(50)
mu = 10 .^(range(-10,stop=10,length=50));

for i in 1:length(mu)
x = pinv(A’*A+mu[i]*I(20))*A’*y
J1[i] = (norm(x))^2
J2[i] = (norm(A*x - y))^2

end
plot(J2,J1, title = "tradeoff curve")

#part e

x = pinv(A’*A+58.2*I(20))*A’*y
J1_e = (norm(x))^2
J2_e = (norm(A*x - y))^2
v_e = zeros(20)
p_e = zeros(20)
for i in range(2,length(x))

v_e[i] = sum(x[1:i])
end
for i in range(2, length(x))

p_e[i] = p_e[i-1] + v_e[i-1] + x[i]/2
end
p1 = plot(x, label="x part e")
p2 = plot(v_e, label="velocity part e")
p3 = plot(p_e, label ="position part e")
plot(p1, p2, p3, layout=(1, 3), size=(980, 250))
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3. Graph layout by quadratic minimization. The objective of this question is to
develop a semi-automatic method of drawing graphs. By a graph, we mean a collection
of vertices linked by edges. For example

1

2

3

4

Consider a graph with n vertices and m edges. Each edge k ∈ {1, . . . ,m} has a
source vertex src(k) and a destination vertex dst(k). In this question, the orientation
of the edge is irrelevant; we can swap the source and destination without changing the
graph.

A graph has an associated incidence matrix Q ∈ Rn×m, where

Qik =


1 if i = src(k)

−1 if i = dst(k)

0 otherwise

For the example graph above, we have

Q =


1 0 0 0 1
−1 1 0 −1 0
0 −1 1 0 −1
0 0 −1 1 0


For many applications we are only concerned with which vertices connect to which.
However, in order to draw a graph, we need to specify in addition the coordinates of
each vertex. In this question, we will solve an optimization problem to do this.

a) You are given the incidence matrix Q of a graph. You are also given a list of fixed
vertices Vfixed ⊂ {1, 2, . . . , n}, and their coordinates pi ∈ R2 for i ∈ Vfixed. Your
objective is to choose the position xi ∈ R2 of the vertices i that are not fixed. To
do this, you will solve

minimize
m∑
k=1

∥xsrc(k) − xdst(k)∥2

subject to xi = pi for i ∈ Vfixed

The idea is that we would like to position the vertices so that vertices connected
by an edge are close together, while maintaining the position of the fixed vertices.

14



Let X ∈ Rn×2 be a matrix whose ith row is the transpose of the position xi

of node i. Express this optimization problem in terms of X. Be sure to define
carefully any additional matrices that you need.

b) Give an algorithm for solving the optimization problem in part (a).

c) In the data file graphs.json you will find the incidence matrix Q for three differ-
ent graphs. These graphs are drawn below, by hand. These are not the expected
solutions.
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For each graph you will also find f , a list of the fixed vertices, and P , the coordi-
nates of the fixed vertices. Apply your algorithm to each of the graphs, and plot
the resulting graphs. The file plotgraph.jl contains a helper file you may want
to use to plot the graphs. It can be called using plotgraph(Q, X) where Q is
the incidence matrix and X the matrix of vertex positions.

Solution. Here is the solution.

a) Let the number of fixed vertices be r, and let f ∈ Rr be a list of the indices of
the fixed vertices. Let P ∈ Rr×2 be a matrix for which row i is the position of the
i’th fixed vertex. Define the matrix C ∈ Rt×n by

Cij =

{
1 if j = fi

0 otherwise

Then we would like to solve

minimize ∥QTX∥2F
subject to CX = P

b) This problem can be written in terms of vector variables by considering X and P
in terms of their columns. Let

X =
[
x̃1 x̃2

]
P =

[
p̃1 p̃2

]
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Then we have two separate problems, for i = 1 and i = 2, given by

minimize ∥QTx̃i∥2F
subject to Cx̃i = P

The solution to this optimization is given by

x̃i =
[
I 0

] [QQT CT

C 0

]−1 [
0
p̃i

]
Since this gives each of the columns of X, we can write the solution for the entirety
of X as

X =
[
I 0

] [QQT CT

C 0

]−1 [
0
P

]
c) The resulting graphs are below.
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4. Low rank factorization of matrices. We are given an m×n matrix A, and square
invertible matrices U and V such that

A = U

[
Ir 0
0 0

]
V (9)
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where Ir is the r × r identity matrix. Note that the zeros in the middle matrix must
have the correct dimensions.

a) What is rank(A). Justify your answer.

b) Suppose that y ∈ range(A), so with this particular y there is a solution to the
equation Ax = y. Show that one such solution is

x = V −1

[
Ir 0
0 0

]
U−1y

Again, you should be careful to ensure that the zeros have the correct dimensions.

c) Suppose instead that y ̸∈ range(A). Show that

U

[
Ir 0
0 0

]
U−1y ̸= y

Note that the zeros in the matrix expression above need not be the same dimen-
sions as in the previous parts.

d) Give, in terms of the columns of U , a basis for range(A). Justify your answer.

e) Suppose you are given the matrix A. Give a procedure, using the QR factor-
ization, for computing matrices U and V satisfying equation (9).

f) Use your procedure to compute U and V for the matrix

A =


1 1 0 0 0 0 0
−1 0 1 1 0 0 0
0 0 −1 0 1 0 0
0 −1 0 0 0 1 0
0 0 0 −1 0 −1 1
0 0 0 0 −1 0 −1


In your solution, include a printout of Julia showing that equation (9) holds.

Solution.

a) Multiplication by invertible matrices does not change the rank, so

rank(A) = rankU−1AV −1 = r

b) For convenience, let

H =

[
Ir 0
0 0

]
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where H ∈ Rm×n, so that A = UHV . We need to show Ax = y, where x =
V −1HTU−1y. (Notice that in this expression we must use HT, since H is not
square.) First, we have

Ax = UHHTU−1y

Now we know also that y ∈ range(A), so y = Az for some vector z. That means

Ax = UHHTU−1y

= UHHTU−1UHV z

= UHHTHV z

Now we can use the fact that HHTH = H, and so

Ax = UHV z

= Az

= y

as desired.

c) For convenience, let G = V −1HTU−1. Then

AGA = UHV V −1V −1HTU−1UHV

= UHV

= A

Now we have to show that if y ∈ range(A) then

y = U

[
Ir 0
0 0

]
U−1y

If y ∈ range(A) then there exists z such that y = Az, and so we have

y = Az

= AGAz

= AGy

= UHHTU−1y

as desired.

d) We have

range(A) = range(UHV )

= range(UH)
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since V is invertible. Now write

U =
[
U1 U2

]
so that U1 consists of the first r columns of U . Then UH = U1, and so range(A)
is the span of the first r columns of U .

e) We use the full pivoted QR factorization of A to give

A = Q

[
R11 R12

0 0

]
PT

= Q

[
Ir 0
0 0

] [
R11 R12

0 I

]
PT

where we can change the lower right block of R to be the identity since it is
multiplied by a zero block. Let U = Q and

V =

[
R11 R12

0 I

]
PT

Notice that V is invertible, since

V −1 = P

[
R−1

11 −R−1
11 R12

0 I

]
f) Some code that computes this is below.

using LinearAlgebra
include("qr.jl")
A = [ 1 1 0 0 0 0 0 ;

-1 0 1 1 0 0 0 ;
0 0 -1 0 1 0 0 ;
0 -1 0 0 0 1 0 ;
0 0 0 -1 0 -1 1 ;
0 0 0 0 -1 0 -1 ]

m,n = size(A)
r = 5
P,Q,R = pivotedqr(A)
X = [R[1:r,:] ; zeros(n-r,r) I(n-r)]
U = Q
V = X*P’
H = [I(r) zeros(r,n-r); zeros(m-r,n)]
# demonstration that this works
A - U*H*V
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5. Left inverses.

a) Suppose A ∈ Rm×n is left invertible, and m > n. Show that there are infinitely
many left-inverses of A.

b) We would like to use a left-inverse C of A for sensing. Then we will have mea-
surements y = Ax, and will use an estimate x̂ = Cy. If we write C in terms of
its columns

C =
[
v1 v2 . . . vm

]
then we can write the estimate as

x̂ = v1y1 + v2y2 + · · ·+ vmym

In this case, the requirements that we have for C are that we must have v1 = v2,
so that the measurements y1 and y2 are processed identically and their sensors
may be interchanged. Given an algorithm for finding a left-inverse C with this
property. Be sure to state any conditions on A necessary for there to be a solution.

c) Implement your algorithm of the previous part for the matrix

A =

 1 2
3 4
5 6


How many solutions C are there?

d) The previous designer of the system used estimation matrix given by

C̃ =

[
−1 −1 1
1 1 −1

]
This matrix is not a left-inverse of A, and so it does not provide an unbiased
estimate of x. However, it has other desirable properties, and so you would like
to find an unbiased estimator C such that

∥C − C̃∥2F

is as small as possible. Here we use the Frobenius norm, which for a p× q matrix
Z is defined by

∥Z∥2F =

p∑
i=1

q∑
j=1

Z2
ij

Using the same A from part c), find such a matrix C.
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e) We now consider a more general approach to finding left-inverses with specific
properties. Suppose L is a left-inverse of A. Show that, for any matrix X, the
matrix

C = L+X(I − AL)

is also a left-inverse of A.

f) In fact, the converse of the previous statement is true. Suppose L is a left inverse
of A. Then if C is also a left-inverse of A, then there exists a matrix X such that

C = L+X(I − AL)

Show this.

Solution. Here is the solution.

a) We have mn unknowns, (the entries of C) and n2 equations (CA = I). These
equations are linear in the entries of C, and in fact we could rearrange them to
be in the form Ax = b where x is a mn-dimensional vector containing the entries
of C. Since m > n we have more unknowns than equations. We also know that
there is at least one solution, since A is left-invertible. We have an undertermined
linear system, and so there are infinitely many solutions.

b) We have to find C satisfying two constraints. The first is that it should be a
left inverse, that is CA = I. The second is that v1 = v2, which we can write as
Cf = 0 where f = e1 − e2. Then we let

B =
[
A f

]
G =

[
I 0

]
and we would like to solve the equation CB = G. If we write C and G in terms
of their columns

C =


cT1
cT2
...
cTn

 G =


gT1
gT2
...
gTn


then the equation CB = G is equivalent to

BTci = gi for i = 1, . . . , n

There exists a solution to these equations iff gi ∈ rangeBT, that is a solution to
the problem exists iff[

ei
0

]
∈ range(BT) for i = 1, . . . , n

In this case we can solve for ci using any method of solving linear equations; e.g.
QR factorization.
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c) We have, using the notation of the previous part:

B =

 1 2 1
3 4 −1
5 6 0


This matrix B is invertible, and so C = GB−1. This gives

C =

[
−1 −1 1
5/6 5/6 −2/3

]
Because B is invertible, this solution is unique.

d) Note that we can rewrite our objective in its transpose form as follows:

minimize
CT

∥CT − C̃T∥2F

subject to: ATCT = I

Then, because ∥M∥2F =
∑n

i=1 ∥mi∥22, where mi are the columns of M , we can
rewrite this problem again as follows:

minimize
c1,c2

∥c1 − c̃1∥22 + ∥c2 − c̃2∥22

subject to: AT c1 = e1

AT c2 = e2,

where c1, c2 are the columns of CT (i.e., rows of C); c̃1, c̃2 are the columns of C̃T

(i.e., rows of C̃); and e1, e2 ∈ R2 are the standard basis unit vectors. Finally,
because c1 and c2 are independent in the objective functions and constraints, we
can solve the above problem by actually solving two separate problems:

minimize
c1

∥c1 − c̃T1 ∥2F

subject to: AT c1 = e1

and

minimize
c2

∥c2 − c̃T2 ∥2F

subject to: AT c2 = e2

Both of these are general norm minimization problems with equality constraints,
and can be solved with the methods outlined on slides 12-13 of lecture 13 (Least-
norm solutions of underdetermined equations). The solution to the first problem
is given by [

c1
λ1

]
=

[
I A
AT 0

]−1 [
c̃1
e1

]
, (10)
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where you discard λ1 after solving. Similarly, the solution to the second problem
is given by [

c2
λ2

]
=

[
I A
AT 0

]−1 [
c̃2
e2

]
, (11)

where you discard λ2 after solving. Using Julia to solve these two minimization
problems, we find that our solution C⋆ is given by

C⋆ =

[
−1 −1 1
3
4

1 −3
4

]
. (12)

It is easy to verify that this is indeed a left inverse of A. The Julia code to
accomplish this is shown below:

using LinearAlgebra;

A = [1.0 2.0; 3.0 4.0; 5.0 6.0]
C_tilde = [-1.0 -1.0 1.0; 1.0 1.0 -1.0]
m, n = size(A)

C = similar(C_tilde)
A_tilde = reduce(vcat, [reduce(hcat, [I(m), A]),

reduce(hcat, [A’, zeros((n, n))])])

for i in 1:2
e_i = I(n)[i, :]
b_tilde = reduce(vcat, [C_tilde[i, :], e_i])
x_tilde = A_tilde \ b_tilde
C[i, :] = x_tilde[begin:m]

end

display(C)
display(C*A)

e) Suppose C = L+X(I − AL), then

CA = (L+X(I − AL))A

= LA+X(I − AL)A

= LA+X(A− ALA)

= I

Therefore C is a left inverse of A.
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f) Suppose CA = I. Then observe the following:

C = L+ C − L

= L+ C − (CA)L

= L+ C(I − AL)

= L+X(I − AL)

where X = C. Therefore, C = L+X(I − AL) for some X.
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