
EE263 Exam, November 2023

• This is a 24-hour take-home midterm. Please turn it in on Gradescope. Be aware
that you must turn it in within 24 hours of downloading it. After that, Gradescope
will not let you turn it in and we cannot accept it.

• You may use any books, notes, or computer programs. You may not discuss the
exam or course material with others, or work in a group.

• The exam should not be discussed at all, with anyone, until 11/7 after everyone
has taken it.

• If you have a question, please submit a private question on Ed, or email the staff
mailing list. We have tried very hard to make the exam unambiguous and clear,
so unless there is a mistake on the exam we’re unlikely to say much.

• We expect your solutions to be legible, neat, and clear. Do not hand in your
rough notes, and please try to simplify your solutions as much as you can. We
will deduct points from solutions that are technically correct, but much more
complicated than they need to be.

• Please check your email during the exam, just in case we need to send out a
clarification or other announcement.

• Start each question on a new page, and make sure to correctly assign pages to
problems in gradescope.

• When a problem involves some computation (say, using Julia), we do not want
just the final answers. We want a clear discussion and justification of exactly
what you did as well as the final numerical result.

• You must turn in your code. Include the code in your pdf submission.

• In the portion of your solutions where you explain the mathematical approach,
you cannot refer to Julia operators, such as the backslash operator. (You can,
of course, refer to inverses of matrices, or any other standard mathematical con-
structs.)

• Some of the problems require you to download data or other files. These files can
be found at the URL

https://ee263.stanford.edu/mid23

• Good luck!

1



1. Real-time interpretation of the honeybee waggle dance. Upon discovering a
food source that is farther than 100 meters from its resident hive, a forager honeybee
will begin a cyclic “waggle” dance that follows the following form: (see figure 1a)

1. The forager bee walks in one direction along a linear path, “waggling” its abdomen
from side to side as it progresses along this path. (This portion of the dance is
referred to in the literature as the run or waggle run.)

2. The forager then turns either to the left or to the right, circling around to return
to the start of the waggle run. (This portion of the dance is referred to as the
return.)

3. The forager repeats the waggle run with the next return being to the opposite
side.

This dance is repeated anywhere from 1 to ≥ 100 times, alternating between a right and
left return after each run. Surrounding forager bees hug close to the dancing forager
bee in order to feel out the pattern of the bee’s dance.

(a) The run angle θ, the run
starting time t0, and the run fin-
ishing time tf of a honeybee wag-
gle dance.

(b) The angle to the food source
θ with respect to the sun and the
distance to the food source, r.

Figure 1: The angle to the food source with respect to the sun, with the hive at the
vertex, is equivalent to the angle, θ, of the waggle run; the distance to the food source,
r, is a linear function of the run duration, τ = tf − t0.

This dance encodes geographical information about the location and quality of an
identified food source (see Figure 1b). When the waggle dance is performed on a vertical
surface (e.g., inside a vertically situated hive), the angle θ from the top (upwards) of
the hive to the linear path of the waggle run is equal to the angle from the sun to the

2



located food source with the hive being the vertex of this angle; the duration τ = tf −t0
of the waggle has a linear relationship with the distance r from the hive to the located
food source.

Thus, when a forager bee locates a food source and returns to the hive, its waggle
dance signals to the honeybees that follow its dance two pieces of information:

• θ(t) is the angle to the located food source with respect to the location of the sun
at time t; and

• r is the distance to the food source in kilometers.

Furthermore, r can be approximately expressed as

r ≈ ξ0 + ξ1τ, (1)

where ξ0 and ξ1 are fit coefficients, and τ = tf − t0 is the duration of the run in the
forager bee’s waggle dance.

a) We will start by first fitting the coefficients ξ0 and ξ1 in the linear approximation
of r. In the data file waggle_dance_data.json, you will use the vectors tau and
r to fit the coefficients. The elements in tau are measurements that represent
durations (in seconds) of waggle runs from m different dances, and the elements
in r are the corresponding distances (in kilometers) to the different food sources.
Choose ξ0 and ξ1 to minimize

m∑
i=1

(ξ0 + ξ1τi − ri)
2

b) Next, we will use least squares to find the equation for the line y = β0 + β1x for
a particular waggle dance. In waggle_dance_data.json, you will see additional
vectors:

• x, which represents the x-coordinates (x(1), . . . , x(n)) at each time step t =
1, . . . , n of a honeybee that is performing a waggle dance;

• y, which represents the y-coordinates (y(1), . . . , x(n)) at each time step t =
1, . . . , n of the honeybee’s waggle dance;

• w, which is a binary variable, denoting whether at time step t the honeybee
is on the waggle run (w(t) = 1) or return (w(t) = 0). In this particular
dance, you will see a waggle run, followed by a return to the left, followed
by a second waggle run, and finally, a return to the right. Thus, there are
only 2 waggle runs in this particular dance.

3



To find the line along which the honeybee is waggling, you will need to use least
squares only on those points where the bee is on a waggle run. Specifically, choose
β0 and β1 to minimize ∑

t|w(t)=1

(β0 + β1x(t)− y(t))2

Report your fitted equation ŷ = β0+β1x. Plot the fitted line, and all of the points
(x(t), y(t)), t = 1, . . . , n, with points on the waggle run in one color, and points
on the return in another color.

c) Using the data of our particular waggle dance, compute the average duration τ
of this particular dance’s waggle runs. To do this, you will: measure the length
(in frames) of both waggle runs present in the dance; take the average; and then
convert the length from frames to seconds. The framerate of the time steps is 30
frames per second; that is, 1 time step forward is equivalent to 1/30 of a second.

d) Now, using your results from parts a), b) and c) (and a little bit of trigonometry),
provide an estimate of the angle θ̂ between the sun and the food source described
by this honeybee’s waggle dance (this will be the same angle between the vector
along which the bee is waggling and the top of the hive, or the positive y-axis),
as well as the approximate distance (in kilometers) to the food source.

Hint: Don’t forget to take into account which way the honeybee is moving along
the line you computed in part c): the angle you are aiming to compute is between
the vector that represents the forward direction of the bee’s movement along the
line and the positive y-axis. If you don’t take that into account, your estimate
will be off by 180 degrees or π radians.

e) Using the same data in part b), use recursive least squares to create a real-time
estimate of the line along which the honeybee is waggling at each time step; that
is, for each time step t, you should have an equation y = β0,t + β1,tx that is fit to
all of the points seen so far. As before, you should only be fitting to points that are
on the waggle run. This means that your estimate of the line will not be updated
when the bee is on the return.

At each time step, use trigonometry to provide a real-time estimate of the angle
between the sun and the located food source. Plot your real-time estimated angle
θ̂t against the time step t. In your plot, include a horizontal line that represents
the estimated angle θ̂ you calculated in part c). Do the recursively estimated
angles θ̂t converge to your estimate θ̂ in part d)?

2. There and back again. A unit mass moves in 1-dimension. It starts at position
0, with velocity 0, at time t = 0. We are going to move it from its starting position
to position 1, and then move it back to the origin. Ideally we would like it to reach
position 1 at time T1 and reach the origin again at time T2.

4



The force acting on it during the interval j−1 ≤ t < j is given by xj for j = 1, . . . , T2.
Let y1 be the position of the mass at time T1 and y2 be the position of the mass at
time T2. We will use parameters T1 = 10 and T2 = 20.

a) Let

y =

[
y1
y2

]
Find the matrix A such that y = Ax.

b) Find the minimum norm sequence of forces x which moves the mass so that at
time T1 its position is 1, and at time T2 its position is 0 again. Plot x (that is
plot xj versus time j).

c) Using the optimal sequence of forces you found in the previous part, compute the
position and velocity of the mass as a function of time. Plot these.

d) Now we would like to trade-off the two objectives

J1 =

T2∑
j=1

∥xj∥2 J2 = (y1 − 1)2 + y22

Compute the optimal trade-off curve, and plot J1 against J2.

e) Find the sequence of forces x which has the smallest norm and achieves a position
error J2 of less than or equal to 0.2. Plot x, and the corresponding position and
velocity of the mass as a function of time.

3. Graph layout by quadratic minimization. The objective of this question is to
develop a semi-automatic method of drawing graphs. By a graph, we mean a collection
of vertices linked by edges. For example

1

2

3

4

Consider a graph with n vertices and m edges. Each edge k ∈ {1, . . . ,m} has a
source vertex src(k) and a destination vertex dst(k). In this question, the orientation
of the edge is irrelevant; we can swap the source and destination without changing the
graph.

5



A graph has an associated incidence matrix Q ∈ Rn×m, where

Qik =


1 if i = src(k)

−1 if i = dst(k)

0 otherwise

For the example graph above, we have

Q =


1 0 0 0 1
−1 1 0 −1 0
0 −1 1 0 −1
0 0 −1 1 0


For many applications we are only concerned with which vertices connect to which.
However, in order to draw a graph, we need to specify in addition the coordinates of
each vertex. In this question, we will solve an optimization problem to do this.

a) You are given the incidence matrix Q of a graph. You are also given a list of fixed
vertices Vfixed ⊂ {1, 2, . . . , n}, and their coordinates pi ∈ R2 for i ∈ Vfixed. Your
objective is to choose the position xi ∈ R2 of the vertices i that are not fixed. To
do this, you will solve

minimize
m∑
k=1

∥xsrc(k) − xdst(k)∥2

subject to xi = pi for i ∈ Vfixed

The idea is that we would like to position the vertices so that vertices connected
by an edge are close together, while maintaining the position of the fixed vertices.
Let X ∈ Rn×2 be a matrix whose ith row is the transpose of the position xi

of node i. Express this optimization problem in terms of X. Be sure to define
carefully any additional matrices that you need.

b) Give an algorithm for solving the optimization problem in part (a).

c) In the data file graphs.json you will find the incidence matrix Q for three differ-
ent graphs. These graphs are drawn below, by hand. These are not the expected
solutions.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

1

23

4

5

6

7

8

9

10

11

12

13

1415

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22
23

24

6



For each graph you will also find f , a list of the fixed vertices, and P , the coordi-
nates of the fixed vertices. Apply your algorithm to each of the graphs, and plot
the resulting graphs. The file plotgraph.jl contains a helper file you may want
to use to plot the graphs. It can be called using plotgraph(Q, X) where Q is
the incidence matrix and X the matrix of vertex positions.

4. Low rank factorization of matrices. We are given an m×n matrix A, and square
invertible matrices U and V such that

A = U

[
Ir 0
0 0

]
V (2)

where Ir is the r × r identity matrix. Note that the zeros in the middle matrix must
have the correct dimensions.

a) What is rank(A). Justify your answer.

b) Suppose that y ∈ range(A), so with this particular y there is a solution to the
equation Ax = y. Show that one such solution is

x = V −1

[
Ir 0
0 0

]
U−1y

Again, you should be careful to ensure that the zeros have the correct dimensions.

c) Suppose instead that y ̸∈ range(A). Show that

U

[
Ir 0
0 0

]
U−1y ̸= y

Note that the zeros in the matrix expression above need not be the same dimen-
sions as in the previous parts.

d) Give, in terms of the columns of U , a basis for range(A). Justify your answer.

e) Suppose you are given the matrix A. Give a procedure, using the QR factor-
ization, for computing matrices U and V satisfying equation (2).

f) Use your procedure to compute U and V for the matrix

A =


1 1 0 0 0 0 0
−1 0 1 1 0 0 0
0 0 −1 0 1 0 0
0 −1 0 0 0 1 0
0 0 0 −1 0 −1 1
0 0 0 0 −1 0 −1


In your solution, include a printout of Julia showing that equation (2) holds.

7



5. Left inverses.

a) Suppose A ∈ Rm×n is left invertible, and m > n. Show that there are infinitely
many left-inverses of A.

b) We would like to use a left-inverse C of A for sensing. Then we will have mea-
surements y = Ax, and will use an estimate x̂ = Cy. If we write C in terms of
its columns

C =
[
v1 v2 . . . vm

]
then we can write the estimate as

x̂ = v1y1 + v2y2 + · · ·+ vmym

In this case, the requirements that we have for C are that we must have v1 = v2,
so that the measurements y1 and y2 are processed identically and their sensors
may be interchanged. Given an algorithm for finding a left-inverse C with this
property. Be sure to state any conditions on A necessary for there to be a solution.

c) Implement your algorithm of the previous part for the matrix

A =

 1 2
3 4
5 6


How many solutions C are there?

d) The previous designer of the system used estimation matrix given by

C̃ =

[
−1 −1 1
1 1 −1

]
This matrix is not a left-inverse of A, and so it does not provide an unbiased
estimate of x. However, it has other desirable properties, and so you would like
to find an unbiased estimator C such that

∥C − C̃∥2F

is as small as possible. Here we use the Frobenius norm, which for a p× q matrix
Z is defined by

∥Z∥2F =

p∑
i=1

q∑
j=1

Z2
ij

Using the same A from part c), find such a matrix C.

8



e) We now consider a more general approach to finding left-inverses with specific
properties. Suppose L is a left-inverse of A. Show that, for any matrix X, the
matrix

C = L+X(I − AL)

is also a left-inverse of A.

f) In fact, the converse of the previous statement is true. Suppose L is a left inverse
of A. Then if C is also a left-inverse of A, then there exists a matrix X such that

C = L+X(I − AL)

Show this.

9


