
EE263 mid-term exam, November 2022

• This is a 24-hour take-home midterm. Please turn it in on Gradescope. Be aware
that youmust turn it in within 24 hours of downloading it. After that, Gradescope
will not let you turn it in and we cannot accept it.

• You may use any books, notes, or computer programs. You may not discuss the
exam or course material with others, or work in a group.

• The exam should not be discussed at all until 11/7 after everyone has taken it.

• If you have a question, please submit a private question on Ed, or email the staff
mailing list. We have tried very hard to make the exam unambiguous and clear,
so unless there is a mistake on the exam we’re unlikely to say much.

• We expect your solutions to be legible, neat, and clear. Do not hand in your
rough notes, and please try to simplify your solutions as much as you can. We
will deduct points from solutions that are technically correct, but much more
complicated than they need to be.

• Please check your email during the exam, just in case we need to send out a
clarification or other announcement.

• Start each question on a new page. Correctly assign pages to problems in grade-
scope. We may take off points if a submission does not do so.

• We will be more thorough grading the midterm than with the homeworks. Please
show the work you do, as it especially helps us give partial credit.

• When a problem involves some computation (say, using Julia), we do not want
just the final answers. We want a clear discussion and justification of exactly
what you did as well as the final numerical result.

• Because this is an exam, you must turn in your code. Include the code in
your pdf submission. We reserve the right to deduct points for missing code.

• In the portion of your solutions where you explain the mathematical approach,
you cannot refer to Julia operators, such as the backslash operator. (You can,
of course, refer to inverses of matrices, or any other standard mathematical con-
structs.)

• Some of the problems require you to download data or other files. These files can
be found at the URL

http://ee263.stanford.edu/mid22.html

• Good luck!
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1. Recursive estimation. A piecewise constant signal is filtered by convolving it with
a smooth function. We start with x ∈ Rn, and upsample (repeat values) to create
u ∈ Rm. The upsampling repeats each value k times, so that m = kn. The constant
signal u ∈ Rm is given by

ui = xj for k(j − 1) < i ≤ kj

The signal u is convolved with a smooth function r, given by

rj = exp(−j2/σ2)

which is defined for −q ≤ j ≤ q. The convolution operation generates output y ∈ Rm,
given by

yi = wi +

min(m,i+q)∑
j=max(1,i−q)

ri−juj (1)

where w is random measurement noise. We have n = 10, k = 5, σ = 2, q = 10. We
will use regularization parameter µ = 0.1. The file recursive.json contains x, y and
w, which satisfy equation (1).

a) Find matrix C such that u = Cx.

b) Find matrix B such that y = Bu+ w.

c) Let A = BC. Find xreg, the regularized least-squares estimate of x given y. That
is, xreg is the x that minimizes

‖Ax− y‖2 + µ‖x‖2

Plot xreg and x on the same plot. (i.e., plot xi versus i)

d) We would like to use a recursive method to compute the regularized least-squares
estimate. Recall the usual recursive-least-squares algorithm:

P (0) = 0 ∈ Rn×n

q(0) = 0 ∈ Rn

for i = 0, 1, . . . ,
P (i+ 1) = P (i) + ai+1a

T
i+1

q(i+ 1) = q(i) + yi+1ai+1

where aTi is the i’th row of A, and yi is the corresponding ith measurement. Then
the estimate based on y1, . . . , yi is xls(i) = P (i)−1q(i).

Explain how to modify this algorithm to recursively compute the regularized
least-squares estimate.
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e) Apply your algorithm to the given data. Plot your estimate when i = 18 and
when i = 30.

f) After applying your algorithm, when i = m, you will have computed the same
regularized least-squares estimate you did in part (c), but in a different way. At
this point, you realize that the data y1, . . . , y20 was incorrect, and you would
like to remove it from your estimate. However, you have already thrown away
y21, . . . , ym. Give an algorithm to adjust your estimate to remove the effect of
measurments y1, . . . , y20. Plot the resulting estimate of x. Note that you only
have access to y1, · · · , y20, the final P and q from part (d), and a1, · · · , a20.

Solution. Here is the solution.

a) We have,
u1 = u2 = ... = uk = x1
uk+1 = uk+2 = ... = u2k = x2
...
u(n−1)k+1 = u(n−1)k+2 = ... = um = xn.
From this system of equation, we can construct C so that similar rows repeat k
times,

C =



1 0 0 ... 0
1 0 0 ... 0
...

...
...

...
0 1 0 ... 0
0 1 0 ... 0
...

... . . . ...
...

... . . . ...
0 0 0 ... 1


b) We can construct the convolution matrix using the following exuations for yi,

y1 = r0 ∗ u1 + r−1 ∗ u2 + ...+ r−q ∗ uq+1

y2 = r1 ∗ u1 + r0 ∗ u2 + ...+ r−q ∗ uq+2

...
ym = rq ∗ uq + rq−1 ∗ uq+1 + ...+ r0 ∗ um
From this system of equation, we can construct C so that similar rows repeat k
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times,

B =



r0 r−1 r−2 ... r−q 0 ... 0
r1 r0 r−1 ... r−q+1 r−q ... 0
r2 r1 r0 ... r−q+2 r−q+1 ... 0
...

...
... ...

...
rq rq−1 rq−2 ... r0 r−1 ... 0
...

... ...
. . . ...

...
... . . . ...

...
... . . . ...

0 0 0 ... ... ... r1 r0


For the above given values,

B =



1.0 0.778801 0.367879 ... 0.0 0.0 0.0 0.0
0.778801 1.0 0.778801 0.0 0.0 0.0 0.0
0.367879 0.778801 1.0 0.0 0.0 0.0 0.0

... . . . ...
0.0 0.0 0.0 0.0 1.0 0.778801 0.367879
0.0 0.0 0.0 0.0 0.778801 1.0 0.778801
0.0 0.0 0.0 ... 0.0 0.367879 0.778801 1.0


c) Regularized least-square solution,

x = (ATA+ µI)−1ATy

The code is given below.
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d) In general, we can compute xls(m) = (
∑m

i=1 ãiã
T
i )
−1∑m

i=1 yiãi recursively using
the method given.

Here, we have
x = (ATA+ µI)−1ATy

which can be written as

xls(m) = (
m∑
i=1

ãiã
T
i + µI)−1

m∑
i=1

yiãi

So, we could modify the initialization, P (0) = µI.

NOTE: Modifying the update step to include µ/m ∗ I is not correct as that will
vary with i and does not include the corresponding regularization factor beyond
the i. Modifying the update step so that any 10 steps can update µ is also wrong
as it depends on i again.

e) Recursive method,

The code is given below.

f) We can subtract the 20 update steps corresponding to y1 to y20 from our final P
and Q before computing x_reg

Resulting estimate of x,
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Note: Regularization terms must not be subtracted.

using LinearAlgebra
using Plots
using ToeplitzMatrices

include("readclassjson.jl")
data = readclassjson("recursive.json")

w = data["w"]
x = data["x"]
y = data["y"]

n = 10
k = 5
sigma = 2
q = 10
mu = 0.1
m = n*k

# a) Matrix C

C = zeros(k*n, n)

for i = 1:k*n
C[i, floor(Int, (i-1)/k) + 1] = 1
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end
display(C)

# b) Matrix B

r(j) = exp(-j^2/sigma^2)

row_1 = zeros(n*k)
r_j = [r(j) for j = 0:-1:-q]
row_1[1:length(r_j)] = r_j

col_1 = zeros(n*k)
c_j = [r(j) for j = 0:q]
col_1[1:length(c_j)] = c_j

B = Toeplitz(row_1, col_1)
display(B)

# c) x_reg

A = B*C

x_reg = inv(A’*A + mu*I(n))*A’*y

plot(x, label = "x")
plot!(x_reg, label = "x_reg")
savefig("../graphics/Reg_LS.pdf")

# e) Recursive method

# Method 1
P = mu * I(n)
q = zeros(n)
for i = 1:k*n

P += A[i, :]*A[i, :]’
q += y[i]*A[i, :]
if i == 18

global x_reg_18 = inv(P)*q
elseif i == 20

global P_20 = P
global q_20 = q

elseif i == 30
global x_reg_30 = inv(P)*q
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end
end
x_reg_m = inv(P)*q

plot(x_reg_m, label = "x_reg_m")
plot!(x_reg_18, label = "Recursive, i = 18")
plot!(x_reg_30, label = "Recursive, i = 30")
savefig("../graphics/Recursive_Reg_LS.pdf")

# f) Remove incorrect measurements

for i = 1:20
global P -= A[i, :]*A[i, :]’
global q -= y[i]*A[i, :]

end
x_reg_corrected = inv(P)*(q)
plot(x_reg_corrected, label = "x_reg_corrected")
plot!(x_reg, label = "x_reg")
savefig("../graphics/Corrected_Reg_LS.pdf")

2. Synchronicity.

a) The following graph shows a cluster of n machines in a data center, arranged
in the form of a directed graph. Each machine has a clock, and communicates
with its neighbors, to determine the clock difference between them. Specifically,
machine i has a clock which reads ci, in seconds. For each edge i→ j, we measure
the clock difference ci − cj. For simplicity, we assume that this clock difference
can be (approximately) measured by accounting for the known communication
latency between the machines.

1 2

34

5

6 7

8

1 2 3

4 5 6

Edges are numbered 1, . . .m. Let ye be the clock difference measured along edge
e. Then we have y = BTc for some matrix B. Find B for the graph shown above.
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b) Since we are only measuring clock differences, we do not expect to be able to
determine c unambiguously. For the above graph, given a measurement y ∈ Rm,
what is the set of c consistent with this measurement?

c) A cycle in the graph is a sequence of distinct vertices, such at 1, 2, 5, 4, 1 which
start and end at the same vertex, and form a loop. The direction of the arrow
is ignored in a cycle, all that matters is that there is an edge between successive
vertices. For example, 2, 3, 5, 2 is a cycle but 1, 2, 4, 1 is not.

Show that the sum of clock differences around a cycle is zero, for a general graph.

d) Given a cycle in the graph, show how to construct a vector x in the nullspace of
B. Hence construct a matrix K with the maximum number of columns such that

BK = 0 and null(K) = 0

and all entries of K are −1, 0 or 1.

e) We measure the following clock differences

y = (−0.56,−0.7, 1.13,−1.12,−1.45, 0.43, 1.02,−0.57)

Show that these values are consistent difference measurements; that is, there
exists a vector of clock values c such that y = BTc. Do this without solving the
least squares for c and then comparing y and BTc.

f) Assume the first clock has c1 = 0. Given y in the previous part, find c2, . . . , cn.

g) Now consider the case where we cannot measure clock differences perfectly; we
measure instead

y = BTc+ w

where w is some small error. We would like to find an estimate of the clocks c.
To do this, we decide to solve

minimize ‖y −BTc‖
subject to c1 = 0

Give an algorithm for doing this.

h) We make a noisy measurement of the clock differences

y = (0.487,−0.128, 0.789, 0.245, 0.184, 0.506,−0.839,−0.647)

Using your algorithm from the previous part, estimate c.
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Solution. Here is the solution.

a) The latency across an edge is measured as the clock difference between the orig-
inating node of the edge and the terminating node. If we let ye be the clock
difference on edge e, and ci be the clock value on node i, then we get the follow-
ing system of equations:

y1 = c1 − c2,
y2 = c2 − c3,
y3 = c5 − c2,
y4 = c1 − c4,
y5 = c6 − c5,
y6 = c5 − c3,
y7 = c3 − c6,
y8 = c4 − c5.

We let y be the vector of clock differences and c be the vector of clock times. We
can construct some B such that y = B>c from the system of equations above.
We get that

B> =



1 −1 0 0 0 0
0 1 −1 0 0 0
0 −1 0 0 1 0
1 0 0 −1 0 0
0 0 0 0 −1 1
0 0 −1 0 1 0
0 0 1 0 0 −1
0 0 0 1 −1 0


.

Thus,

B =


1 0 0 1 0 0 0 0
−1 1 −1 0 0 0 0 0
0 −1 0 0 0 −1 1 0
0 0 0 −1 0 0 0 1
0 0 1 0 −1 1 0 −1
0 0 0 0 1 0 −1 0

 .

b) Since we are only measuring the clock differences, we can only determine the clock
times up to a uniform constant error across all of the clocks. To illustrate this,
notice that each ye is the difference of c. Thus if we set c to be a vector of all
ones, then ye is 0 for all edges e. Thus, any vector with uniform elements will
be in the nullspace of B>. We deduce that if c is a vector of clock times, u is a
vector of uniform elements, then B>c = B>(c+ u).
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c) Suppose we have a cycle of n vertices. Without loss of generality (since we can
arbitrarily re-number the vertices and edges as long as the graph is preserved),
we assume edge 1 goes from vertex 1 to 2, edge 2 goes from vertex 2 to 3, so on,
and edge n goes from vertex n to 1. It follows that

n∑
i=1

yi =
n−1∑
i=1

(ci − ci+1) + (cn − c1)

=
n∑

i=1

ci +
n∑

i=1

ci

= 0.

d) Notice that B is a matrix such that bij is 1 if edge j originates in vertex i, -1 if
edge j terminates in vertex i, and 0 otherwise. So when we consider Bv for any
vector v, v is a vector of weights we assign to the edges, and the ith element of Bv
is the difference between the the sum of the weights of edges coming from vertex
i and the sum of the weights of edges going to vertex i.
It follows from part c) that if we have a cycle in the graph with some vertices VC
and some edges EC that if we make a vector v such that ve = 1 for e ∈ EC and
ve = 0 otherwise, then c>Bv will be zero for any clock timings c. This is because
c>Bv takes the sum of the clock differences on all of the edges indicated in v.
Since the edges indicated in v form a cycle, this sum is zero for any timings. This
in turn implies Bv is the zero vector.
Now we know that vector v is in the nullspace of B if it is the indicator vector of a
cycle as described above. Thus we can constructK such that the columns ofK are
the indicator vectors of cycles in the graph. This will ensure that BK = 0. If we
have no repeated columns or zero columns, then null(K) will be zero. The graph
has two cycles. One consists of routes 5, 6, 7 while the other consists of routes
3, 2, 7, 5. Finally, notice that if a vector v assigns an edge a negative weight, it
flips the terms of the clock difference, and is equivalent to assigning an edge going
the opposite direction a positive weight. Thus, we can "create a new cycle" by
assigning edge 1 a weight of −1 and assigning edges 3, 4, 8 a weight of 1. Thus
we can construct

K =



0 0 −1
0 1 0
0 1 1
0 0 1
1 1 0
1 0 0
1 1 0
0 0 1


.

We know from part a) that we can uniquely determine the clock timings up to a
constant offset, so the only vectors in the null space of B> are the vectors with
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uniform elements. Thus, B> is rank 5, and it follows that B is rank 5. Since K
is rank 3 as it clearly has 3 independent columns (each column has a 1 in a row
where the others have zeroes), we can deduce that K is a basis of the nullspace
of K. This holds as the nullspace of B must be rank 3, K has 3 independent
columns, and the columns of K are in the nullspace of B. We can confirm this in
Julia by checking rank(B).

e) We know that the columns of K are a basis of the null space of B. The fundamen-
tal theorem of linear algebra gives us that the null space of B is the orthogonal
complement of the range of B>. Thus, if the given clock difference vector is or-
thogonal to the columns of K, then it is in the range of B> and is thus consistent.
We can check this by taking K>y. In Julia, we compute the result to be the zero
vector, so y is consistent.

f) If we assume that c1 = 0, then we can remove the first column from B> to get
a matrix B>0 , remove the first element from c to get the vector c0, and solve the
least squares problem for y = B>0 c0. This works since y is a combination of the
columns of B> weighted by c. If c0 = 0, then the first column of B> contributes
nothing towards y, and it can be removed. Additionally, we know that the clock
timings are uniquely determined up to a constant offset. If we set c = 0, we fix
that constant offset, so the clock timings are fixed. We get that

c1 = 0, c2 = 0.56, c3 = 1.26, c4 = 1.12, c5 = 1.69, c6 = 0.24.

g) Since we are fixing c1 = 0 still, we continue to use B>0 and c0. Since y is not
exactly in the range of B>, and B>0 is full rank, we can use the left inverse of B>0
to find the best estimates c. In execution, this is exactly the same as what we did
in the previous part.

h) We execute the method from the previous two parts for the given y and see that

c1 = −0, c2 = −0.4485, c3 = −0.2666, c4 = −0.2835, c5 = 0.3250, c6 = 0.5407.

3. Fitting a Piecewise Linear Function to Data. Last year, we sampled the maxi-
mum daily temperature outside Packard twice a month. Looking at the plotted results,
we believe there’s a clear trend in the temperatures over the time of year. We have
collected n = 25 datapoints. Each data point consists of two values: x and y. The x
value ranges from 0 to 12 and describe when the data was collected in months since the
start of the year. The y value is the recorded temperature in Fahrenheit. We have two
data sets, a training set and a test set, in the file tempdata.json.
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In order to better describe the relationship between time of year and daily maximum
temperature, we will fit a piecewise linear function g to the training data set. We will
use m + 1 piecewise affine functions f0, f1, . . . , fm, and approximate the data by the
function g, which is a linear combination of them.

g(x) =
m∑
j=0

αjfj(x)

Here f0 = 1 and for j = 1, . . . ,m we have

fj(x) =


0 if x < (j − 1)12

m
mx
12
− (j − 1) if (j − 1)12

m
≤ x ≤ j 12

m

1 if j 12
m
< x

.

The functions fi are very simple piecewise linear step functions. We recommend graph-
ing a couple for variable m and j to get intuition for what these functions are.

a) Our objective is to select weights α0, . . . , αm to minimize

n∑
i=1

‖yi − g(xi)‖22.

Express this objective in the form

minimize ‖y − Fα‖22

for some known vector y, known matrix F , and unknown vector α.
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b) Suppose n is a multiple of m, and there are n + 1 data points that are evenly
spaced in x from 0 to 12 inclusive, so that gap between points is 12/n. Show that
the matrix F is full rank.

c) Use Julia to solve this problem for m = 3, 6, 12, 24 for the training data xtrain and
ytrain. Plot the data points (x, y) along with the fitted function g for each value
of m.

d) Plot the minimal squared 2-norm error (‖y − Fα‖22) for m = 3, 6, 12, 24. Is there
a point where adding more complexity to the model (increasing m) offers clearly
diminishing returns?

e) We now turn to validation of the fit. We have an additional data set, xtest and
ytest, which we will use to test the accuracy of our model. The test error is

J test =
n∑

i=1

‖ytest
i − g(xtest

i )‖22.

Here g is the function you found in part (c) above. Plot the test error J test versus
m for m = 3, 6, 12, 24. Note that this does not involve recomputing α. What does
this say about your answer to part (d).

Solution.

a) We want to minimize the sum

n∑
i=1

‖yi − g(xi)‖22

Substituting the given definition of g into the sum yeilds the expression

n∑
i=1

‖yi −
m∑
j=0

αjfj(xi)‖22

So we define

y =

y1...
yn

 F =


f0(x1) f1(x1) . . . fm(x1)
f0(x2) f1(x2) . . . fm(x2)

...
... . . . ...

f0(xn) f1(xn) . . . fm(xn)

 α =

α0
...
αm


Then the problem is

minimize ‖y − Fα‖22
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b) Suppose n = am where a is a positive integer. Then the matrix F ∈ R(n+1)×(m+1)

is

F =



1 0 0 . . .
1 q 0 . . .
1 1 q 0
...

1 1 . . . 1 q


where q ∈ R is given by

q =


1/a
2/a
...
1


We can see that null(F ) = {0} as follows. Let z = Fx, partitioned compatibility
with F , so that

z =


z1
z2
...
zm


with z1 ∈ R and zi ∈ Ra for i > 1. Suppose z = Fx = 0, then since z1 = 0 we
have x1 = 0. Then

z2 = x1 + qx2

and since z2 = 0 and x1 = 0 we must have x2 = 0. Continuing in this way we see
that the only solution to Fx = 0 is x = 0, and so null(F ) = {0}.

c) For this part, students simply need to implement the matrices and vectors they
discovered in part a) and solve for α via least squares in Julia. The correct plot
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for this part is as follows.

The following code can be used to generate this plot in Jupyter Notebooks with
Julia.

#Block 1: Imports
using LinearAlgebra
using Random, Distributions
using Plots
using LaTeXStrings
include("readclassjson.jl");

#Block 2: Data Loading
data = readclassjson("../data/tempdata.json")
x_train = data["x_train"]
y_train = data["y_train"]
scatter(x_train, y_train, label=false, xticks=[0,2,4,6,8,10,12],
title="Daily Maximum Temperature", ylabel="Temperature (F)", xlabel="Month");

#Block 3: Solving for alpha
n = 25
ms = [3,6,12,24]
error = []

for m=ms
fs = []
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for j=0:m
function f(x)
if x < 12*(j-1)/m
return 0.0
elseif x > 12*j/m
return 1.0
else
return m*x/12-(j-1)
end
end

push!(fs, f)
end

G = reshape([fs[j](x_train[i]) for j=1:m+1 for i=1:n],n,m+1)
alpha = G \ y_train
y_fit = G * alpha
push!(error, norm(y_train-y_fit)^2)
plot!(x_train, G * alpha, label=LaTeXString("\$m = $m\$"))
end

plot!()

d) For this part, students should comment that diminishing returns takes effect at
m = 6. We see the error drops tremendously as m is raised from 3 to 6. However,
doubling m to 12 and again to 24 offers a much shallower reduction in the error.
The correct plot for this part is as follows.
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It’s expected that students simply modify their code from the previous part to
also record the squared 2-norm error between the fitted function and the data.
The following code can generate this plot.

#Block 4: Plotting the error
scatter(ms, error, label=false, xticks=[0,4,8,12,16,20,24],
title=L"Squared $2$-norm Error of Fit", ylabel="Error", xlabel=L"m")
plot!(ms, error, label=false)

e) For this part, students should see that the piecewise linear model clearly overfits
after m = 6. We see the error still decreases steeply as m is raised from 3 to 6.
Where the error previously dropped shallowly though, the error now rises again
as m is raised from 6 to 12 and again when m is raised to 24. This example
demonstrates that adding more components to the model might increase the fit
of the model to the data it is being fit to, but it doesn’t necessarily increase the
model’s accuracy to the underlying phenomenon. Students should make some
comment about the overfit demonstrating that the point of diminishing returns
may also indicate the point where the model beings to overfit to the data. The
correct plot for this part is as follows.

Now, students need to test the fitted function and α from the previous part
against the 24 new test points. It is critical that students do not refit g to the
new function. The following code can generate this plot.

#Block 5: Calculating the test error
x_test = data["x_test"]
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y_test = data["y_test"]
test_error = []

for m=ms
fs = []

for j=0:m
function f(x)
if x < 12*(j-1)/m
return 0.0
elseif x > 12*j/m
return 1.0
else
return m*x/12-(j-1)
end
end

push!(fs, f)
end

G = reshape([fs[j](x_train[i]) for j=1:m+1 for i=1:n],n,m+1)
G_test = reshape([fs[j](x_test[i]) for j=1:m+1 for i=1:n-1],n-1,m+1)
alpha = G \ y_train
y_fit = G * alpha
y_fit_test = G_test * alpha
push!(test_error, norm(y_test-y_fit_test)^2)
end

scatter(ms, test_error, label=false, xticks=[0,4,8,12,16,20,24],
title=L"Squared $2$-norm Error of Fit on Test Set", ylabel="Error", xlabel=L"m")
plot!(ms, test_error, label=false)

4. Some true or false questions. For each of the statements below, state whether
it is true or false. If true, give a brief one-sentence explanation why. If false, give a
counterexample.

a) If f : Rn → Rn is a linear function and A ∈ Rn×n, then f(Ax) = Af(x).

b) There exists a matrix A ∈ Rm×n and a vector x ∈ Rn such that ATAx = 0 but
Ax 6= 0.

c) If u, v, w ∈ Rn , and rank
[
u v w

]
= 3, then rank

[
u+ v v + w w + u

]
= 3.

d) If rank(A) < rank
[
A B

]
, then rank(A) < rank

[
A
B

]
.
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e) For any A,B ∈ Rm×n, rank
[
A B

]
= rank

[
A A+B

]
.

f) If A ∈ Rm×n and B ∈ Rm×k, then range(A) ⊥ range(B) if and only if ATB = 0.

g) If A ∈ Rn×n and rank(A) = r, then dimnull
[
A A2

]
= 2n− r.

h) Suppose A =
[
Q1 Q2

] [R1

0

]
with

[
Q1 Q2

]
orthogonal, with Q1 ∈ Rm×r and

R1 ∈ Rr×n. If null(RT
1 ) = {0} then range(A) = range(Q1).

i) Suppose A =
[
Q1 Q2

] [R1

0

]
with

[
Q1 Q2

]
orthogonal, with Q1 ∈ Rm×r and

R1 ∈ Rr×n. If null(RT
1 ) = {0} and x 6∈ range(A), then QT

1 x = 0.

j) Suppose A =
[
Q1 Q2

] [ I N
0 0

]
with

[
Q1 Q2

]
orthogonal, with Q1 ∈ Rm×r

and N ∈ Rr×(n−r). Then null(A) = range

[
−N
I

]
.

Solution.

a) If f : Rn → Rn is a linear function and A ∈ Rn×n, then f(Ax) = Af(x).

This is false. For example if f(x) = Bx we may have AB 6= BA.

b) There exists a matrix A ∈ Rm×n and a vector x ∈ Rn such that ATAx = 0 but
Ax 6= 0.

This is false. It is always true that null(ATA) = null(A).

c) If u, v, w ∈ Rn , and rank
[
u v w

]
= 3, then rank

[
u+ v v + w w + u

]
= 3.

This is true, because

[
u+ v v + w w + u

]
=
[
u v w

]  1 0 1
1 1 0
0 1 1


and rank(AB) = rank(A) whenever B is invertible.

d) If rank(A) < rank
[
A B

]
, then rank(A) < rank

[
A
B

]
.

This is false. For example, let A and B be linearly independent vectors. Then,

rank(A) = rank

[
A
B

]
= 1

but
rank

[
A B

]
= 2
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e) For any A,B ∈ Rm×n, rank
[
A B

]
= rank

[
A A+B

]
.

This is true, because

[
A A+B

]
=
[
A B

] [ I I
0 I

]
and rank(AB) = rank(A) whenever B is invertible.

f) If A ∈ Rm×n and B ∈ Rm×k, then range(A) ⊥ range(B) if and only if ATB = 0.

This is true. To show if, suppose y ∈ range(A) and z ∈ range(B). Then y = Az
and z = Bw for some z and w. Then yTz = zTATBw = 0. Conversely, if
range(A) ⊥ range(B) then zTATBw = 0 for all z, w and hence ATB = 0.

g) If A ∈ Rn×n and rank(A) = r, then dimnull
[
A A2

]
= 2n− r.

This is true. We have range(A2) ⊂ range(A), and so rank
[
A A2

]
= rank(A) =

r. Then the result follows from conservation of dimension.

h) Suppose A =
[
Q1 Q2

] [R1

0

]
with

[
Q1 Q2

]
orthogonal, with Q1 ∈ Rm×r and

R1 ∈ Rr×n. If null(RT
1 ) = {0} then range(A) = range(Q1).

This is true. Clearly range(A) ⊂ range(Q1), since A = Q1R. But if y ∈
range(Q1) then y = Q1w for some w. Since nullRT

1 = {0} we have range(R1) = Rr

and so for any w there exists z such that w = R1z. Hence y = Q1R1z = Az.

i) Suppose A =
[
Q1 Q2

] [R1

0

]
with

[
Q1 Q2

]
orthogonal, with Q1 ∈ Rm×r and

R1 ∈ Rr×n. If null(RT
1 ) = {0} and x 6∈ range(A), then QT

1 x = 0.

This is False. Consider

Q1 =

[
1
0

]
Q2 =

[
0
1

]
R1 = 1

Then A =

[
1 0
0 0

]
, so x =

[
1
1

]
is not in range(A), but does not have QT

1 x = 0.

j) Suppose A =
[
Q1 Q2

] [ I N
0 0

]
with

[
Q1 Q2

]
orthogonal, with Q1 ∈ Rm×r

and N ∈ Rr×(n−r). Then null(A) = range

[
−N
I

]
.

This is true.. We have Ax = 0 if and only if
[
I N

]
x = 0 which holds if and

only if x ∈ range

[
−N
I

]
.
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5. Some properties of the rank. In this problem, we will prove a useful inequality
about the rank of matrices, intuitively indicating that the rank of the multiplication of
two matrices cannot be too small if the original matrices have high ranks. Each part
of the problem consists of a small step of the proof.

a) Let Ik be the k × k identity matrix. Then, for arbitrary matrices A and B with
appropriate dimensions, what is the rank of the following matrices M1 and M2?
Justify your answer.

M1 =

(
Ik 0
A I`

)
, M2 =

(
Ik B
0 I`

)
b) Let U ∈ R(k+`)×m be an arbitrary matrix of rank r. Express the rank of M1U and

UTM2 in terms of k, `, m, and r, and justify your answer.

c) Let C ∈ Rp×n and D ∈ Rn×q be arbitrary matrices. Find two block matrices M1

and M2 with similar block structure to the ones introduced in part (a) such that

M1

(
In D
C 0

)
M2 =

(
In 0
0 −CD

)
.

d) Using the results from the previous parts, show that

rank

(
In D
C 0

)
− rank(CD)

is a constant. Find this constant in terms of n, p, and q, and justify your answer.

e) Show that

rank(C) + rank(D) ≤ rank

(
In D
C 0

)
.

Note that you can solve this part independently, without needing any results from
the previous parts. Also, even if you cannot prove the result of this part, you can
use if for the next part.

Hint: one way to approach this problem is to first show that, if C and D are
full-column rank, then for any matrix J ,

rank

[
J D
C 0

]
= rank(D) + rank(C)

f) Use the results from parts (d) and (e) to show that

rank(C) + rank(D)− rank(CD) ≤ s,

where s is the constant you found in part (d).
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Solution.

a) Both M1 and M2 are full rank since

M1x =M1

[
x1
x2

]
= 0⇒

[
x1

Ax1 + x2

]
= 0⇒

[
x1
x2

]
= 0⇒ x = 0⇒ rank(M1) = k+`.

A similar argument holds for M2.

b) Since M1 is full rank, null(U) = null(M1U), so rank(M1U) = rank(U) = r.
Similarly, we have that rank(UTM2) = rank(MT

2 U) = r.

c)

M1 =

(
In 0
−C Ip

)
, M2 =

(
In −D
0 Iq

)
d) From part b, we know that

rank

(
M1

(
In D
C 0

)
M2

)
= rank

(
In D
C 0

)
.

From part c, we know

rank

(
M1

(
In D
C 0

)
M2

)
= rank

(
In 0
0 −CD

)
,

and the RHS of this expression is rank(CD) + n, so

rank

(
In D
C 0

)
− rank(CD) = n.

e) Let’s remove the minimum required number of columns from C and D such that
the remaining columns are independent. The resulting matrices are denoted by
C̃ and D̃, having rank(C) and rank(D) columns respectively. If we do this on(
In D
C 0

)
, then the resulting matrix is

(
Ĩn D̃

C̃ 0

)
, such that Ĩn is the identity

matrix with some columns removed. Now, if(
Ĩn D̃

C̃ 0

)
x =

(
Ĩn D̃

C̃ 0

)[
x1
x2

]
=

[
x̃1 + D̃x2
C̃x1

]
= 0,

then x1 = 0 because C̃ is full rank. Then x̃1, which is x1 appended with some
zeros, is also zero, so D̃x2 = 0, which implies that x2 = 0 since D̃ is full rank.

Thus, x = 0 and
(
Ĩn D̃

C̃ 0

)
is full rank, which means that its rank is rank(C) +
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rank(D). Note that this matrix is constructed by removing some columns from(
In D
C 0

)
, and this process can only decrease the rank. Thus,

rank(C) + rank(D) = rank

(
Ĩn D̃

C̃ 0

)
≤ rank

(
In D
C 0

)
.

f)

n = rank

(
In D
C 0

)
− rank(CD) ≥ rank(C) + rank(D)− rank(CD)⇒ s = n
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