
EE263 mid-term exam, November 2022

• This is a 24-hour take-home midterm. Please turn it in on Gradescope. Be aware
that youmust turn it in within 24 hours of downloading it. After that, Gradescope
will not let you turn it in and we cannot accept it.

• You may use any books, notes, or computer programs. You may not discuss the
exam or course material with others, or work in a group.

• The exam should not be discussed at all until 11/7 after everyone has taken it.

• If you have a question, please submit a private question on Ed, or email the staff
mailing list. We have tried very hard to make the exam unambiguous and clear,
so unless there is a mistake on the exam we’re unlikely to say much.

• We expect your solutions to be legible, neat, and clear. Do not hand in your
rough notes, and please try to simplify your solutions as much as you can. We
will deduct points from solutions that are technically correct, but much more
complicated than they need to be.

• Please check your email during the exam, just in case we need to send out a
clarification or other announcement.

• Start each question on a new page. Correctly assign pages to problems in grade-
scope. We may take off points if a submission does not do so.

• We will be more thorough grading the midterm than with the homeworks. Please
show the work you do, as it especially helps us give partial credit.

• When a problem involves some computation (say, using Julia), we do not want
just the final answers. We want a clear discussion and justification of exactly
what you did as well as the final numerical result.

• Because this is an exam, you must turn in your code. Include the code in
your pdf submission. We reserve the right to deduct points for missing code.

• In the portion of your solutions where you explain the mathematical approach,
you cannot refer to Julia operators, such as the backslash operator. (You can,
of course, refer to inverses of matrices, or any other standard mathematical con-
structs.)

• Some of the problems require you to download data or other files. These files can
be found at the URL

http://ee263.stanford.edu/mid22.html

• Good luck!
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1. Recursive estimation. A piecewise constant signal is filtered by convolving it with
a smooth function. We start with x ∈ Rn, and upsample (repeat values) to create
u ∈ Rm. The upsampling repeats each value k times, so that m = kn. The constant
signal u ∈ Rm is given by

ui = xj for k(j − 1) < i ≤ kj

The signal u is convolved with a smooth function r, given by

rj = exp(−j2/σ2)

which is defined for −q ≤ j ≤ q. The convolution operation generates output y ∈ Rm,
given by

yi = wi +

min(m,i+q)∑
j=max(1,i−q)

ri−juj (1)

where w is random measurement noise. We have n = 10, k = 5, σ = 2, q = 10. We
will use regularization parameter µ = 0.1. The file recursive.json contains x, y and
w, which satisfy equation (1).

a) Find matrix C such that u = Cx.

b) Find matrix B such that y = Bu+ w.

c) Let A = BC. Find xreg, the regularized least-squares estimate of x given y. That
is, xreg is the x that minimizes

‖Ax− y‖2 + µ‖x‖2

Plot xreg and x on the same plot. (i.e., plot xi versus i)

d) We would like to use a recursive method to compute the regularized least-squares
estimate. Recall the usual recursive-least-squares algorithm:

P (0) = 0 ∈ Rn×n

q(0) = 0 ∈ Rn

for i = 0, 1, . . . ,
P (i+ 1) = P (i) + ai+1a

T
i+1

q(i+ 1) = q(i) + yi+1ai+1

where aTi is the i’th row of A, and yi is the corresponding ith measurement. Then
the estimate based on y1, . . . , yi is xls(i) = P (i)−1q(i).

Explain how to modify this algorithm to recursively compute the regularized
least-squares estimate.

2



e) Apply your algorithm to the given data. Plot your estimate when i = 18 and
when i = 30.

f) After applying your algorithm, when i = m, you will have computed the same
regularized least-squares estimate you did in part (c), but in a different way. At
this point, you realize that the data y1, . . . , y20 was incorrect, and you would
like to remove it from your estimate. However, you have already thrown away
y21, . . . , ym. Give an algorithm to adjust your estimate to remove the effect of
measurments y1, . . . , y20. Plot the resulting estimate of x. Note that you only
have access to y1, · · · , y20, the final P and q from part (d), and a1, · · · , a20.

2. Synchronicity.

a) The following graph shows a cluster of n machines in a data center, arranged
in the form of a directed graph. Each machine has a clock, and communicates
with its neighbors, to determine the clock difference between them. Specifically,
machine i has a clock which reads ci, in seconds. For each edge i→ j, we measure
the clock difference ci − cj. For simplicity, we assume that this clock difference
can be (approximately) measured by accounting for the known communication
latency between the machines.

1 2

34

5

6 7

8

1 2 3

4 5 6

Edges are numbered 1, . . .m. Let ye be the clock difference measured along edge
e. Then we have y = BTc for some matrix B. Find B for the graph shown above.

b) Since we are only measuring clock differences, we do not expect to be able to
determine c unambiguously. For the above graph, given a measurement y ∈ Rm,
what is the set of c consistent with this measurement?

c) A cycle in the graph is a sequence of distinct vertices, such at 1, 2, 5, 4, 1 which
start and end at the same vertex, and form a loop. The direction of the arrow
is ignored in a cycle, all that matters is that there is an edge between successive
vertices. For example, 2, 3, 5, 2 is a cycle but 1, 2, 4, 1 is not.
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Show that the sum of clock differences around a cycle is zero, for a general graph.

d) Given a cycle in the graph, show how to construct a vector x in the nullspace of
B. Hence construct a matrix K with the maximum number of columns such that

BK = 0 and null(K) = 0

and all entries of K are −1, 0 or 1.

e) We measure the following clock differences

y = (−0.56,−0.7, 1.13,−1.12,−1.45, 0.43, 1.02,−0.57)

Show that these values are consistent difference measurements; that is, there
exists a vector of clock values c such that y = BTc. Do this without solving the
least squares for c and then comparing y and BTc.

f) Assume the first clock has c1 = 0. Given y in the previous part, find c2, . . . , cn.

g) Now consider the case where we cannot measure clock differences perfectly; we
measure instead

y = BTc+ w

where w is some small error. We would like to find an estimate of the clocks c.
To do this, we decide to solve

minimize ‖y −BTc‖
subject to c1 = 0

Give an algorithm for doing this.

h) We make a noisy measurement of the clock differences

y = (0.487,−0.128, 0.789, 0.245, 0.184, 0.506,−0.839,−0.647)

Using your algorithm from the previous part, estimate c.

3. Fitting a Piecewise Linear Function to Data. Last year, we sampled the maxi-
mum daily temperature outside Packard twice a month. Looking at the plotted results,
we believe there’s a clear trend in the temperatures over the time of year. We have
collected n = 25 datapoints. Each data point consists of two values: x and y. The x
value ranges from 0 to 12 and describe when the data was collected in months since the
start of the year. The y value is the recorded temperature in Fahrenheit. We have two
data sets, a training set and a test set, in the file tempdata.json.
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In order to better describe the relationship between time of year and daily maximum
temperature, we will fit a piecewise linear function g to the training data set. We will
use m + 1 piecewise affine functions f0, f1, . . . , fm, and approximate the data by the
function g, which is a linear combination of them.

g(x) =
m∑
j=0

αjfj(x)

Here f0 = 1 and for j = 1, . . . ,m we have

fj(x) =


0 if x < (j − 1)12

m
mx
12
− (j − 1) if (j − 1)12

m
≤ x ≤ j 12

m

1 if j 12
m
< x

.

The functions fi are very simple piecewise linear step functions. We recommend graph-
ing a couple for variable m and j to get intuition for what these functions are.

a) Our objective is to select weights α0, . . . , αm to minimize

n∑
i=1

‖yi − g(xi)‖22.

Express this objective in the form

minimize ‖y − Fα‖22

for some known vector y, known matrix F , and unknown vector α.
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b) Suppose n is a multiple of m, and there are n + 1 data points that are evenly
spaced in x from 0 to 12 inclusive, so that gap between points is 12/n. Show that
the matrix F is full rank.

c) Use Julia to solve this problem for m = 3, 6, 12, 24 for the training data xtrain and
ytrain. Plot the data points (x, y) along with the fitted function g for each value
of m.

d) Plot the minimal squared 2-norm error (‖y − Fα‖22) for m = 3, 6, 12, 24. Is there
a point where adding more complexity to the model (increasing m) offers clearly
diminishing returns?

e) We now turn to validation of the fit. We have an additional data set, xtest and
ytest, which we will use to test the accuracy of our model. The test error is

J test =
n∑

i=1

‖ytest
i − g(xtest

i )‖22.

Here g is the function you found in part (c) above. Plot the test error J test versus
m for m = 3, 6, 12, 24. Note that this does not involve recomputing α. What does
this say about your answer to part (d).

4. Some true or false questions. For each of the statements below, state whether
it is true or false. If true, give a brief one-sentence explanation why. If false, give a
counterexample.

a) If f : Rn → Rn is a linear function and A ∈ Rn×n, then f(Ax) = Af(x).

b) There exists a matrix A ∈ Rm×n and a vector x ∈ Rn such that ATAx = 0 but
Ax 6= 0.

c) If u, v, w ∈ Rn , and rank
[
u v w

]
= 3, then rank

[
u+ v v + w w + u

]
= 3.

d) If rank(A) < rank
[
A B

]
, then rank(A) < rank

[
A
B

]
.

e) For any A,B ∈ Rm×n, rank
[
A B

]
= rank

[
A A+B

]
.

f) If A ∈ Rm×n and B ∈ Rm×k, then range(A) ⊥ range(B) if and only if ATB = 0.

g) If A ∈ Rn×n and rank(A) = r, then dimnull
[
A A2

]
= 2n− r.

h) Suppose A =
[
Q1 Q2

] [R1

0

]
with

[
Q1 Q2

]
orthogonal, with Q1 ∈ Rm×r and

R1 ∈ Rr×n. If null(RT
1 ) = {0} then range(A) = range(Q1).
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i) Suppose A =
[
Q1 Q2

] [R1

0

]
with

[
Q1 Q2

]
orthogonal, with Q1 ∈ Rm×r and

R1 ∈ Rr×n. If null(RT
1 ) = {0} and x 6∈ range(A), then QT

1 x = 0.

j) Suppose A =
[
Q1 Q2

] [ I N
0 0

]
with

[
Q1 Q2

]
orthogonal, with Q1 ∈ Rm×r

and N ∈ Rr×(n−r). Then null(A) = range

[
−N
I

]
.

5. Some properties of the rank. In this problem, we will prove a useful inequality
about the rank of matrices, intuitively indicating that the rank of the multiplication of
two matrices cannot be too small if the original matrices have high ranks. Each part
of the problem consists of a small step of the proof.

a) Let Ik be the k × k identity matrix. Then, for arbitrary matrices A and B with
appropriate dimensions, what is the rank of the following matrices M1 and M2?
Justify your answer.

M1 =

(
Ik 0
A I`

)
, M2 =

(
Ik B
0 I`

)
b) Let U ∈ R(k+`)×m be an arbitrary matrix of rank r. Express the rank of M1U and

UTM2 in terms of k, `, m, and r, and justify your answer.

c) Let C ∈ Rp×n and D ∈ Rn×q be arbitrary matrices. Find two block matrices M1

and M2 with similar block structure to the ones introduced in part (a) such that

M1

(
In D
C 0

)
M2 =

(
In 0
0 −CD

)
.

d) Using the results from the previous parts, show that

rank

(
In D
C 0

)
− rank(CD)

is a constant. Find this constant in terms of n, p, and q, and justify your answer.

e) Show that

rank(C) + rank(D) ≤ rank

(
In D
C 0

)
.

Note that you can solve this part independently, without needing any results from
the previous parts. Also, even if you cannot prove the result of this part, you can
use if for the next part.
Hint: one way to approach this problem is to first show that, if C and D are
full-column rank, then for any matrix J ,

rank

[
J D
C 0

]
= rank(D) + rank(C)
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f) Use the results from parts (d) and (e) to show that

rank(C) + rank(D)− rank(CD) ≤ s,

where s is the constant you found in part (d).
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