
EE263 Final Exam Solutions, December 2023

• This is a 24-hour take-home exam. Please turn it in on Gradescope. Be aware that
you must turn it in within 24 hours of downloading it. After that, Gradescope
will not let you turn it in and we cannot accept it.

• You may use any books, notes, or computer programs. You may not discuss the
exam or course material with others, or work in a group.

• The exam should not be discussed at all, with anyone, until 12/13 after everyone
has taken it.

• If you have a question, please submit a private question on Ed, or email the staff
mailing list. We have tried very hard to make the exam unambiguous and clear,
so unless there is a mistake on the exam we’re unlikely to say much.

• We expect your solutions to be legible, neat, and clear. Do not hand in your
rough notes, and please try to simplify your solutions as much as you can. We
will deduct points from solutions that are technically correct, but much more
complicated than they need to be.

• Please check your email during the exam, just in case we need to send out a
clarification or other announcement.

• Start each question on a new page, and make sure to correctly assign pages to
problems in gradescope.

• When a problem involves some computation (say, using Julia), we do not want
just the final answers. We want a clear discussion and justification of exactly
what you did as well as the final numerical result.

• You must turn in your code. Include the code in your pdf submission.

• In the portion of your solutions where you explain the mathematical approach,
you cannot refer to Julia operators, such as the backslash operator. (You can,
of course, refer to inverses of matrices, or any other standard mathematical con-
structs.)

• Some of the problems require you to download data or other files. These files can
be found at the URL

https://ee263.stanford.edu/grandfinale23

• Good luck!
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1. Hovercraft racing. You’ve just entered into the world’s first Hovercraft Grand Prix!
This high-stakes competition will put the controllability of your homemade hovercraft
to the test. The primary goal of your hovercraft is to intercept proximity targets laid
out in a track. The targets must be hit at particular times (so it’s not really a race,
it’s a test of accuracy.) Your controller can apply forces in the x and y directions.

More specifically, you can apply piecewise constant force inputs u(t) = ud(k) for
k ≤ t < k + 1 where k ∈ Z+ and u(t) ∈ R2. The state of the system is

x(t) =

[
q(t)
q̇(t)

]
where q(t) ∈ R2 is the position of the hovercraft at time t. The starting line of the race
is at (0, 0) and the hovercraft must be stationary until the race begins. The hovercraft
has mass 1.

a) Find matrices A and B that model the hovercraft’s dynamics exactly as a discrete-
time linear dynamical system of the form

x(k + 1) = Ax(k) +Bud(k)

b) You are given the m = 4 target positions p1 = (1, 1), p2 = (0, 2), p3 = (−1, 1)
and p4 = (0, 0), and target times t1 = 10, t2 = 40, t3 = 50, and t4 = 60. Let
tmax = 65. Find the sequence of forces ud(0), . . . , ud(tmax) that minimizes

tmax∑
k=0

∥ud(k)∥2

such that the hovercraft passes through each of the target positions at the cor-
responding target time. Plot the trajectory of the hovercraft in R2. Plot the
components of the input force vs. time.

c) New regulations have been issued this year that now limit the total thrust. We
would like to trade off

J1 =
m∑
i=1

∥q(ti)− pi∥2

and

J2 =
tmax∑
k=0

∥ud(k)∥2

While we may not be able to pass through each target exactly, we still get points
for getting as close as possible to each one. Describe a method to do this. Plot
the optimal trade-off curve of J2 versus J1.

d) Find the controller inputs that minimize J1 while achieving the total thrust limit

J2 ≤ 0.005

Plot the trajectory of the hovercraft in R2. Plot the components of the input
force vs. time.

2



Solution.

a) The dynamics of this system are described by q̈ = u which leads to the continuous
system equations of

Acont =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



Bcont =


0 0
0 0
1 0
0 1


Then, by discretizing the system and letting h = 1, we get

A = ehAcont = I + hAcont =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1



B =

(∫ h

0

eτAdτ

)
Bcont =


0.5 0
0 0.5
1 0
0 1


b)

q(t) = y(t) = Ãtud

where
Ãt =

[
At−1B At−2B · · · 0

]
Then, 

y(t1)
y(t2)
y(t3)
y(t4)

 = Ãud

where

Ã =


Ãt1

Ãt2

Ãt3

Ãt4


Then, the minimization problem becomes

min ∥ud∥2 s.t. ydes = Ãud

=⇒ ud = ÃT
(
ÃÃT

)−1

ydes = Ã†ydes
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c)
J1 = ∥Ãud − ydes∥2

J2 = ∥ud∥2

min J1 + µJ2 =⇒ useq =
(
ÃT Ã+ µI

)−1

ÃTydes

d) See Julia code below:

import Pkg
using LinearAlgebra
Pkg.add("RecipesBase")
import RecipesBase: plot
Pkg.add("Plots")

# Problem 1
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# part b

A_tilde = zeros(8,130)
t1 = 10
t2 = 40
t3 = 50
t4 = 60
tmax = 65
A = [1 0 1 0;0 1 0 1;0 0 1 0;0 0 0 1]
B = [0.5 0;0 0.5;1 0;0 1]
C = [1 0 0 0;0 1 0 0]

# Constructing Toeplitz Rows
for i = 1:tmax

if i<t1
A_tilde[1:2,2*(i-1)+1:2*i] = C*A^(t1-i)*B
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end
if i<t2

A_tilde[3:4,2*(i-1)+1:2*i] = C*A^(t2-i)*B
end
if i<t3

A_tilde[5:6,2*(i-1)+1:2*i] = C*A^(t3-i)*B
end
if i<t4

A_tilde[7:8,2*(i-1)+1:2*i] = C*A^(t4-i)*B
end

end

# Solving using min-norm solution
y_des = [1;1;0;2;-1;1;0;0]
u_seq = pinv(A_tilde)*y_des

# Solving for position at each time step
xs = zeros(4,tmax+1)
for k = 1:tmax

xs[:,k+1] = A*xs[:,k]+B*u_seq[2*(k-1)+1:2*k]
end

# Plotting
using Plots
plot(1:tmax,u_seq[1:2:end],title="Force Components of

Hovercraft",label="u_x")
display(plot!(1:tmax,u_seq[2:2:end],label="u_y",xlabel="t"

,ylabel="u"))
plot(xs[1,:],xs[2,:],aspect_ratio=:equal,xlabel="x"
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,ylabel="y")
plot!(y_des[1:2:end],y_des[2:2:end],seriestype= :scatter,

legend=false,title="Min-Norm Hovercraft Trajectory")

# Problem 1
# part c

p = LinRange(-2,4,100)
mu = 10 .^p
J1 = zeros(length(mu),1)
J2 = zeros(length(mu),1)
for i=1:length(mu)

u_seq = inv(A_tilde’*A_tilde+mu[i]*I)*A_tilde’*y_des
J1[i] = (norm(A_tilde*u_seq-y_des))^2
J2[i] = (norm(u_seq))^2

end
plot(J1,J2,title="Optimal Trade-off Curve",xlabel="J1"

,ylabel="J2",legend=false)

# Problem 1
# part d

mu = 166
u_seq = inv(A_tilde’*A_tilde+mu*I)*A_tilde’*y_des
J1 = (norm(A_tilde*u_seq-y_des))^2
J2 = (norm(u_seq))^2
print(String("J2 = $J2"))
xs = zeros(4,tmax+1)
for k = 1:tmax

xs[:,k+1] = A*xs[:,k]+B*u_seq[2*(k-1)+1:2*k]
end
using Plots
plot(1:tmax,u_seq[1:2:end],title="Force Components of

Hovercraft",label="u_x")
display(plot!(1:tmax,u_seq[2:2:end],label="u_y",xlabel="t"

,ylabel="u"))
plot(xs[1,:],xs[2,:],aspect_ratio=:equal,xlabel="x"

,ylabel="y")
plot!(y_des[1:2:end],y_des[2:2:end],seriestype= :scatter

,legend=false,title="Multi-Objective Hovercraft Trajectory")

2. Heat flow. We consider here an example of a simple model for heat flow. We have a
directed graph with m edges and n nodes. The incidence matrix A ∈ Rn×m is defined
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by

Aij =


1 if edge j points to node i

−1 if edge j starts at node i

0 otherwise

An edge cannot start and end at the same node. There can be at most one edge joining
any two nodes. The temperature at node i at time t is xi(t). Suppose we add heat to
node i are rate si(t). Let fk(t) be the amount of heat flowing through edge k at time
t. Then we have

ẋ(t) = s(t) + Af(t)

Now the rate of heat flow on an edge is proportional to the temperature difference at
its endpoints, so we have

Kf = −ATx

where K ∈ R is a constant. Then 1/K is the thermal conductivity of the edge. For
convenience, in this question we will assume K = 1. This model is a linear dynamical
system of the form

ẋ(t) = Qx(t) + s

where Q = −AAT.

a) Show that for any graph Q has at least one zero eigenvalue. What is the corre-
sponding eigenvector?

b) We will first consider the unforced system

ẋ(t) = Qx(t)

What are the equilibirium solutions of this system? Give a brief one-sentence
interpretation.

c) A matrix P ∈ Rn×n is called off-diagonal nonnegative if

Pij ≥ 0 for i ̸= j

Show that Q is off-diagonal nonnegative.

d) We would like our model to only produce nonnegative temperatures. Consider a
general linear dynamical system

ẋ(t) = Px(t)

For every node i we would like the quantity xi(t) to be nonnegative for all time.
That is, if xi(0) ≥ 0 for all i, then

xi(t) ≥ 0 for all i and all t ≥ 0

Show that this implies that P is off-diagonal nonnegative.
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e) Recall that a matrix P is called Hurwitz if all of its eigenvalues have negative real
parts, and it is called stable if etP → 0 as t → ∞. A matrix is Hurwitz if and
only if it is stable.

Suppose P has the property that

etPx(0) → 0 for all x(0) ≥ 0

where x(0) ≥ 0 means that all elements of x(0) are nonnegative. Can we conclude
that P is Hurwitz? If you think the answer is no, give an example, otherwise give
a proof.

f) Suppose now that the source s(t) is constant, so that the dynamics become

ẋ(t) = Qx(t) + s

where s ∈ Rn is a vector which does not depend on time. Show that

Qx(t) = (etQ − I)s+QetQx(0)

Solution.

a) A is an incidence matrix, the elements of each column sums to 0. This means
that for AT each row sums to 0 =⇒ AT1 = 0
Q1 = −AAT1 = −A0 = 0
Q has 0 as an eigenvalue and the vector 1 is the corresponding eigenvector.

b) At equilibrium all the nodes are at a constant temperature and there is no heat
transfer. At equilibrium we require Qx(t) = 0 . This means that x(t) ∈ null(Q).
In part a we identified that 1 is one such vector. Any vector of all constants would
be an equilibrium solution.

c) Let us consider each element of Qij; Qij = −
∑m

k=1 AikAjk where k is an edge.
There are three cases to consider (1) edge k starts at i and points to j =⇒ Aik =
−1 and Ajk = 1, (2) edge k starts at j and points to i =⇒ Aik = 1 and Ajk = −1
or (3) edge k does not connect i and j. In all three cases the product AikAjk is
non-positive. Hence, Qij is non-negative.

d) For the system: ẋ = Px(t), x(t) = etPx(0)
If xi(0) ≥ and xi(t) ≥ 0, =⇒ etP ≥ 0
Let us define P ∗ = P + αI where α = |min(diagonal entries of P)|
=⇒ P = P ∗ − αI
etP = etP

∗
e−tα

Since both etP and e−tα are non-negative, =⇒ etP
∗ is non-negative.

Based on the expansion of the exponential, P ∗ must have all non-negative entries.
P and P ∗ share the same off-diagonal entries. Hence, P is off-diagonal non-
negative.
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e) We can express x(0) as
∑n

i=1 αiei. Since etPx(0) → 0, etP ei → 0 for all i. This
implies that each column of (etP )i → 0. We can conclude that etP → 0 and hence
P is Hurwitz.

f) The solution to this system is:

x(t) = etQx(0) +

∫ t

0

e(t−τ)QIsdτ

Qx(t) = QetQx(0) +Q

∫ t

0

e(t−τ)QIsdτ

∫ t

0

e(t−τ)Qdτ =

∫ t

0

I + (t− τ)Q+
(t− τ)2Q2

2!
+

(t− τ)3Q3

3!
+ . . . dτ

= τ − (t− τ)2Q

2!
− (t− τ)3Q2

3!
− . . . |t0

= t+
(t)2Q

2!
+

(t)3Q2

3!
+ . . .

Hence,

Q

∫ t

0

e(t−τ)Qdτ = tQ+
(t)2Q2

2!
+

(t)3Q3

3!
+ . . .

= etQ − I

Substituting this back we obtain:

Qx(t) = QetQx(0) + (etQ − I)s

3. Some true/false questions. For each statement, give a proof if it is true, or a
counterexample if it is false.

a) Suppose A ∈ Rn×n is invertible, and let A = QR be its full QR factorization with
Q orthogonal and R upper triangular. Let B = RQ. If A is symmetric, then B
is symmetric.

b) Suppose A ∈ Rn×n is invertible, and let A = QR be its full QR factorization with
Q orthogonal and R upper triangular. Let B = RQ. If A is upper triangular,
then B is upper triangular.

c) Suppose A ∈ Rn×n is symmetric with eigenvalues λ1 ≥ · · · ≥ λn. Of all vectors x
with ∥x∥ = 1, the x that maximizes (xTAx)2 is the eigenvector corresponding to
the largest eigenvalue λ1.
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d) Suppose A ∈ Rn×n is symmetric with eigenvalues λ1 ≥ · · · ≥ λn. Of all vectors x
with ∥x∥ = 1, the x that minimizes (xTAx)2 is the eigenvector corresponding to
the smallest eigenvalue λn.

e) For any matrices A,B,C we have

range(ABC) ⊆ range(A)

f) ∥Ax∥ ≤ ∥A∥F∥x∥ for all matrices A ∈ Rm×n and vectors x ∈ Rn. Here ∥A∥F
denotes the Frobenius norm.

g) If A ∈ Rn×n has all eigenvalues λ satisfying |λ| < 1, then ∥A2∥ ≤ ∥A∥.

Solution. Here is the solution.

a) True: Suppose A is symmetric. Since A = QR, R = QTA. Therefore, B =
RQ = QTAQ. Then, BT = (QTAQ)T = QTAT (QT )T = QTAQ. Therefore, B is
also symmetric.

b) True: Suppose A is upper triangular. Then, it’s QR decomposition is given by
A = IA, since I is orthogonal and A is upper triangular, and the QR decomposi-
tion is unique for nonsingular matrices (up to the sign). Therefore, B = AI = A
is also upper triangular.

c) False: Consider the symmetric matrix A = diag(3, 0,−4). The largest eigenvalue
is λ1 = 3 with eigenvector e1. However, (xTAx)2 is maximized by the third
eigenvector e3 associated with λ3 = −4, since (−4)2 > 32.

d) False: Consider the symmetric matrix A = diag(3, 0,−4). The smallest eigen-
value is λ3 = −4 with eigenvector e3. However, (xTAx)2 is minimized by the
second eigenvector e2 associated with λ2 = 0.

e) True: Suppose y ∈ R(ABC). Then, y = ABCx for some x. Therefore, y = Av
for v = BCx, and we can conclude y ∈ R(A).

f) True: Suppose A ∈ Rm×n and x ∈ Rn. Then, ∥Ax∥2 ≤ ∥A∥2∥x∥2 by definition
of the l2-induced operator norm. Then, since ∥A∥22 = (σmax(A))

2 = λmax(A
TA) ≤∑n

i=1 λi(A
TA) = tr(ATA) = ∥A∥2F , we can conclude that ∥Ax∥2 ≤ ∥A∥2∥x∥2 ≤

∥A∥F∥x∥2.

g) False: Consider A =

[
0.9 10
0 0.9

]
with eigenvalues |λ| = 0.9 < 1. Then, ∥A∥2 =

σmax(A) ≈ 10.0804. We compute A2 =

[
0.81 18.0
0 0.81

]
and ∥A2∥2 ≈ 18.0364.

Therefore, ∥A2∥2 > ∥A∥2.
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4. Suspension system. Let us consider the following mechanical suspension system

where u is a force that applied to the third mass. The equations of motion for this
system are

q̈1 = −k1q1 − b1q̇1 − k2q1 + k2q2 − b2q̇1 + b2q̇2

q̈2 = −k2q2 + k2q1 − b2q̇2 + b2q̇1 − k3q2 + k3q3 − b3q̇2 + b3q̇3

q̈3 = −k3q3 + k3q2 − b3q̇3 + b3q̇2 + u

a) We want to model the system as

ẋ = Ax+Bu

y = Cx

Find A,B and C in terms of k1, k2, k3, b1, b2, b3. Use states x = (q1, q2, q3, q̇1, q̇2, q̇3)
and let y = q3.

b) We will use sample period h = 1, with all ki = 1 and all bi = 1. Let xd(k) = x(kh),
and yd(k) = y(kh). Suppose the force input u is piecewise constant, so that
u(t) = ud(k) for kh ≤ t < kh+ h. Find a Ad, Bd and Cd so that these quantities
satisfy the discrete-time linear dynamical system

xd(k + 1) = Adxd(k) +Bdud(k)

yd(k) = Cdxd(k)

c) Suppose x(0) = 0. Use your discretization to find the response of the system
when

ud(k) =

{
1 if k < 3

0 otherwise

Plot y against t for 0 ≤ t ≤ 100.

12



d) Define the magnitude of the response J by

J =
99∑
k=0

yd(k)
2

The force ud is known to satisfy

49∑
k=0

ud(k)
2 ≤ 1

and ud(k) = 0 for k ≥ 50. Find the the force ud which satisfies these constraints
and maximizes J . Report the maximum J , and plot the force input ud, and the
resulting output yd.

Solution.

a)

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−(k1 + k2) k2 0 −(b1 + b2) b2 0
k2 −(k2 + k3) k3 b2 −(b2 + b3) b3
0 k3 −k3 0 b3 −b3



B =


0
0
0
0
0
1


C =

[
0 0 1 0 0 0

]
b)

Ad = ehA = I + Ah+
1

2
A2h2 + · · ·

Bd =

∫ h

0

eτABdτ = A−1(ehA − I)B

Cd = C

c)
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Figure 1: Plot of y

d) Let us express y(0), . . . y(99) as a function of u(0), . . . , u(49):

 y(0)
...

y(99)

 = T

 u(0)
...

u(49)

 , T =


0 · · ·

CB 0 · · ·
CAB CB · · ·

...
CA98B CA97B · · · CA49B


 u(0)

...
u(49)



To maximize J we must maximize ∥Tu∥2 subject to ∥u∥ ≤ 1. That is the norm
of T (squared), ie, its maximum singular value squared. The worst case u is given
by the right singular vector associated with the largest singular value of T . We
have maxu

∑99
t=0 y(t)

2 = ∥T∥2 ≈ 35.15.

Figure 2: Force input
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Figure 3: Output

using LinearAlgebra
using Plots
using ToeplitzMatrices
#choose k and b
k1 = 1
k2 = 1
k3 = 1
b1 = 1
b2 = 1
b3 = 1
#define A, B and C
A = [ 0 0 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 1;

-(k1+k2) k2 0 -(b1+b2) b2 0;
k2 -(k2+k3) k3 b2 -(b2+b3) b3;
0 k3 -k3 0 b3 -b3]

B = [0 0 0 0 0 1]’

C = [ 0 0 1 0 0 0]

#Discretize A, B and C
Ad = exp(A)
Bd = inv(A)*(Ad - I(6))*B
Cd = C

#Check for stability
abs.(eigvals(Ad))

15



#Find step response
u_step = vec([1 1 1 zeros(97)’])

x_step = zeros(100, 6)
y_step = zeros(100)

for i in 1:99
x_step[i+1,:] = Ad*x_step[i,:]+Bd*u_step[i]
y_step[i] = (Cd*x_step[i,:])[1]

end

plot(y_step)

#worst case response

h = zeros(99)
A6 = I(6)

for i in 1:99
h[i] =(Cd*A6*Bd)[1]
A6=A6*Ad

end

T = Toeplitz(vec([0 h[:]’]),vec([0 zeros(49)’]))

U, S, V = svd(Matrix(T))

plot(V[:, 1])
plot(T*V[:, 1])

5. Illumination. We have a square region R divided into N × N pixels. It is illumi-
nated by n lamps. We apply power qj to lamp j. In this question we will choose
the vector of powers q ∈ Rn to illuminate the region R as uniformly as possible. The
position of the ith lamp is given by the ith column of the matrix L, which is in the
file illumination.json. We will use N = 25. The region R is

R = {(x, y) | 0 ≤ x ≤ N, 0 ≤ y ≤ N}

Suppose we apply power a ∈ R to a lamp at position r ∈ R3. Let (x, y) ∈ R2 be the
center of one of the pixels in R. The distance from the lamp to the pixel is

d =
(
(x− r1)

2 + (y − r2)
2 + r23

) 1
2
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Then the light intensity falling on that pixel is ka/d2. The total light intensity on any
pixel is the sum of the intensities from the different lamps. We will have k = 10.

a) Let li be the light intensity on pixel i. We would like to apply power to the
lamps to uniformly light the region R, so that each pixel receives light intensity
approximately equal to 1. Define the error

J =
N2∑
i=1

(li − 1)2

Find the optimal choice of powers q ∈ Rn, where qj is the power applied to lamp j.
Report the total power used

Ptot =
n∑

j=1

qj

Plot the intensity as a heatmap. You may do this using

using Plots
heatmap(Y, c = :thermal, aspectratio = :equal, clims=(0,2))

where Y is an N × N matrix of intensities. Report the power applied to each
lamp, and the error J .

b) We unfortunately have a power budget; we require Ptot ≤ 15. Here is one simple
approach for achieving this. We use the optimal solution from the previous part,
but scale it so that Ptot = 15. Do this, and report the error J .

c) It is possible to find the choice of powers that minimizes J subject to the budget
constraint. Find this choice of powers. Plot the resulting heatmap of intensity,
report the total power used, and the power applied to each lamp.

Solution.

a) We want to minimize
∥l − 1∥2

We’ll order the pixels from i = 1, . . . , N2, then

pi =

xi

yi
0

 ∈ R3

The position of the jth lamp is given by r(j) = Lj where Lj is the jth column of
L. Then, we can write

l = kÃq
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where
Ãij =

1

∥pi − r(j)∥2

So, we can find the least-squares solution to

min ∥kÃq − 1∥2

=⇒ qopt =
1

k

(
ÃT Ã

)−1

ÃT1

qopt = [2.03, 0.46, 1.69, 2.98, 3.92, 0.49, 0.26, 1.00, 1.66, 1.75]T

Ptot = 16.245 and J = 2.415.

b) We will scale the magnitude of each power input by

uscaled =
15

Ptot

uopt

J = 3.077.

c) We can formulate this as a constrained min-norm problem of the form

min ∥kÃq − 1∥2 s.t. Ptot = 15

which is equivalent to

min ∥kÃq − 1∥2 s.t. 1T q = 15

=⇒
[
q
λ

]
=

[
k2ÃT Ã 1
1T 0

]−1 [
kÃT1
15

]
qopt = [1.96, 0.58, 1.85, 2.67, 3.27, 0.42, 0.31, 1.16, 1.19, 1.59]T
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Ptot = 15.000 and J = 2.759.

See Julia code below:

import Pkg
Pkg.add("JSON")
include("readclassjson.jl")
data = readclassjson("illumination.json")
using LinearAlgebra
Pkg.add("RecipesBase")
import RecipesBase: plot
Pkg.add("Plots")

# Problem 5
# part a

L = data["L"]
N = 25
N2 = N^2
n = size(L)[2]
k = 10

# Creating matrix of centers of pixels
Px = zeros(N,N)
for i = 1:N

for j = 1:N
Px[i,j] = j-0.5

end
end
Py = zeros(N,N)
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for i = 1:N
for j = 1:N

Py[i,j] = i-0.5
end

end
px = reshape(Px,N2,1)
py = reshape(Py,N2,1)
P_tilde = [px py zeros(N2,1)]

# Creating matrix A_tilde
A_tilde = zeros(N2,n)
for i = 1:N2

for j = 1:n
curr_pixel_pos = P_tilde[i,:]
curr_lamp_pos = L[:,j]
A_tilde[i,j] = 1/(norm(curr_pixel_pos-curr_lamp_pos))^2

end
end

q_opt = (1/k).*inv(A_tilde’*A_tilde)*A_tilde’*ones(N2,1)
P_tot = dot(q_opt,ones(n,1))
print(String("P_total = $P_tot"))
display(q_opt)
J = norm(k.*A_tilde*q_opt-ones(N2,1))
print(String("J = $J"))

A = reshape(k.*A_tilde*q_opt,N,N)
using Plots
heatmap(A, c = :thermal, aspectratio = :equal, clims=(0,2),

title="Light Intensity")

# Problem 5
# part b

q_opt_scaled = (15/P_tot).*q_opt
J = norm(k.*A_tilde*q_opt_scaled-ones(N2,1))
print(String("J = $J"))

# Problem 5
# part c

T = [k^2 .*A_tilde’*A_tilde ones(n,1);ones(1,n) 0]
z = [k.*A_tilde’*ones(N2,1);15]
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q_opt = (inv(T)*z)[1:n]

P_tot = dot(q_opt,ones(n,1))
print(String("P_total = $P_tot"))
display(q_opt)
J = norm(k.*A_tilde*q_opt-ones(N2,1))
print(String("J = $J"))

A = reshape(k.*A_tilde*q_opt,N,N)
using Plots
heatmap(A, c = :thermal, aspectratio = :equal, clims=(0,2),title=

"Light Intensity w/ constraint")

6. Finding missing data. We are given data from a ratings system, in the form of a
matrix Z ∈ Rm×n. Here Zij is the rating that user i gives to movie j. A reasonable
assumption about this setting is that such recommendation matrices have low rank.
The idea is that a users rating depends on a few factors (that we don’t know), such as
whether they like romantic movies, comedies, etc. If there were r such hidden factors,
then every row of the matrix would be a linear combination of r unknown vectors.

However, we do not have all entries of the matrix, because not every user has seen
every movie. We would like to fill in the missing entries, making use of the low rank
property of such matrices. We have

Z =

[
X P
R Q

]
where X ∈ Rm1×n1 is the unknown block. In more realistic settings, the unknown
entries would be distributed throughout the matrix. Here, for simplicity, we consider
the case when all the top-left block is unknown. That means that the first m1 users
have not rated the first n1 movies.

a) Show that

range

[
P
Q

]
⊆ range

[
X P
R Q

]
b) Now suppose that Q is fat and full rank. Show that there exists X such that

range

[
P
Q

]
= range

[
X P
R Q

]
c) Using the results of the previous two parts, explain how to construct X which

minimizes
rank

[
X P
R Q

]
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d) To save money, the movie streaming service decides to only show movies which
have sufficiently high ratings. For each user i there is a threshhold rating si. The
jth movie is shown if Zij ≥ si for all i.

Using the data in movieratings.json, find which movies are not shown.

Important note: you must solve this question exactly. Iterative solutions are not
acceptable and will not receive points.

Solution. Here is the solution.

a) Suppose y ∈ R
([

P
Q

])
. Then, y =

[
P
Q

]
x for some x ∈ Rn−n1 .

Letting v =

[
0
x

]
∈ Rn (i.e., the first n1 entries are all 0), we see then that

Zv =

[
X P
R Q

] [
0
x

]
=

[
X
R

]
0 +

[
P
Q

]
x = y. (1)

Therefore, y ∈ R
([

X P
R Q

])
.

We can therefore conclude that R
([

P
Q

])
⊆ R

([
X P
R Q

])
.

b) Since Q ∈ R(m−m1)×(n−n1) is fat and full rank, the columns of R ∈ R(m−m1)×n1 are
in the range of Q; that is, R = QA for some A ∈ R(n−n1)×n1 .

More specifically, we can let A = QT (QQT )−1R (since Q is fat and full rank, QQT

is invertible).

Then, let X = PA. Therefore,[
X
R

]
=

[
PA
QA

]
=

[
P
Q

]
A, (2)

and we can conclude that every column of
[
X
R

]
is in the range of

[
P
Q

]
.

Therefore,

rank
[
P
Q

]
= rank

[
X P
R Q

]
. (3)

c) As shown in the previous problem, letting X = PQT (QQT )−1R will cause

rank
[
P
Q

]
= rank

[
X P
R Q

]
. (4)
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Since we can’t change the value of P and Q, the rank of Z is therefore minimized
with this choice of X.

d) To find the movies that aren’t shown, first construct Z using X from Part C.
Then, iterate through j = 1, . . . , n and if there is some i = 1, . . . ,m such that
Zij < si, then the movie is not shown.

Using this algorithm we determine that movies j = 15, 21, 25, 48, 61, 62, 63, 65, 82
are not shown.

See the Julia code below:

include("../code/readclassjson.jl")

data = readclassjson("../data/movieratings.json")
m = data["m"]
n = data["n"]
m1 = data["m1"]
n1 = data["n1"]
Q = data["Q"]
P = data["P"]
R = data["R"]
s = data["s"]

# Construct X
A = Q \ R # A = Q’ * inv(Q * Q’) * R
X = P * A

# Construct Z
Z = [X P; R Q]

# Find all movies not shown
movies_not_shown = Int.([])
for j in 1:n

if any(Z[:, j] .< s)
append!(movies_not_shown, j)

end
end
print("Movies Not Shown: ", movies_not_shown, "\n")
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