Solving general linear equations using Matlab

In this note we consider the following problem: Determine whether there is a solution \(x \in \mathbb{R}^n \) of the (set of) \(m \) linear equations \(Ax = b \), and if so, find one. To check existence of a solution is the same as checking if \(b \in \mathcal{R}(A) \). We consider here the general case, with \(A \in \mathbb{R}^{m \times n} \), with \(\text{Rank}(A) = r \). In particular, we do not assume that \(A \) is full rank.

Existence of solution via rank

A simple way to check if \(b \in \mathcal{R}(A) \) is to check the rank of \([A \ b]\), which is either \(r \) (i.e., the rank of \(A \)) if \(b \in \mathcal{R}(A) \), or \(r + 1 \), if \(b \notin \mathcal{R}(A) \). This can be checked in Matlab using

\[
\text{rank}([A \ b]) == \text{rank}(A)
\]

(or evaluating the two ranks separately and comparing them). If the two ranks above are equal, then \(Ax = b \) has a solution. But this method does not give us a solution, when one exists. This method also has a hidden catch: Matlab uses a numerical tolerance to decide on the rank of a matrix, and this tolerance might not be appropriate for your particular application.

Using the backslash and pseudo-inverse operator

In Matlab, the easiest way to determine whether \(Ax = b \) has a solution, and to find such a solution when it does, is to use the backslash operator. Exactly what \(A\backslash b \) returns is a bit complicated to describe in the most general case, but if there is a solution to \(Ax = b \), then \(A\backslash b \) returns one. A couple of warnings: First, \(A\backslash b \) returns a result in many cases when there is no solution to \(Ax = b \). For example, when \(A \) is skinny and full rank (i.e., \(m > n = r \)), \(A\backslash b \) returns the least-squares approximate solution, which in general is not a solution of \(Ax = b \) (unless we happen to have \(b \in \mathcal{R}(A) \)). Second, \(A\backslash b \) sometimes causes a warning to be issued, even when it returns a solution of \(Ax = b \). This means that you can’t just use the backslash operator: you have to check that what it returns is a solution. (In any case, it’s just good common sense to check numerical computations as you do them.) In Matlab this can be done as follows:

\[
x = A\backslash b; \quad \% \text{possibly a solution to } Ax=b\\
norm(A*x-b) \% \text{if this is zero or very small, we have a solution}
\]

If the second line yields a result that is not very small, we conclude that \(Ax = b \) does not have a solution. Note that executing the first line might cause a warning to be issued.

In contrast to the rank method described above, you decide on the numerical tolerance you’ll accept (i.e., how small \(\|Ax-b\| \) has to be before you accept \(x \) as a solution of \(Ax = b \)). A common test that works well in many applications is \(\|Ax-b\| \leq 10^{-5}\|b\| \).
You can also use the pseudo-inverse operator: \(x = \text{pinv}(A) \ast b \) is also guaranteed to solve \(Ax = b \), if \(Ax = b \) has a solution. As with the backslash operator, you have to check that the result satisfies \(Ax = b \), since in general, it doesn’t have to.

Using the QR factorization

While the backslash operator is a convenient way to check if \(Ax = b \) has a solution, it’s a bit opaque. Here we describe a method that is transparent, and can be fully explained and understood using material we’ve seen in the course.

We start with the full QR factorization of \(A \) with column permutations:

\[
AP = QR = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 & R_2 \\ 0 & 0 \end{bmatrix}.
\]

Here \(Q \in \mathbb{R}^{m \times m} \) is orthogonal, \(R \in \mathbb{R}^{m \times n} \) is upper triangular, and \(P \in \mathbb{R}^{n \times n} \) is a permutation matrix. The submatrices have the following dimensions: \(Q_1 \in \mathbb{R}^{m \times r} \), \(Q_2 \in \mathbb{R}^{m \times (m-r)} \), \(R_1 \in \mathbb{R}^{r \times r} \) is upper triangular with nonzero elements along its main diagonal, and \(R_2 \in \mathbb{R}^{r \times (n-r)} \). The zero submatrices in the bottom (block) row of \(R \) have \(m - r \) rows.

Using \(A = QRP^T \) we can write \(Ax = b \) as

\[
QRP^T x = QRz = b,
\]

where \(z = P^T x \). Multiplying both sides of this equation by \(Q^T \) gives the equivalent set of \(m \) equations \(Rz = Q^T b \). Expanding this into subcomponents gives

\[
Rz = \begin{bmatrix} R_1 & R_2 \\ 0 & 0 \end{bmatrix} z = \begin{bmatrix} Q_1^T b \\ Q_2^T b \end{bmatrix}.
\]

We see immediately that there is no solution of \(Ax = b \), unless we have \(Q_2^T b = 0 \), because the bottom component of \(Rz \) is always zero.

Now let’s assume that we do have \(Q_2^T b = 0 \). Then the equations reduce to

\[
R_1 z_1 + R_2 z_2 = Q_1^T b,
\]

a set \(r \) linear equations in \(n \) variables. We can find a solution of these equations by setting \(z_2 = 0 \). With this form for \(z \), the equation above becomes \(R_1 z_1 = Q_1^T b \), from which we get \(z_1 = R_1^{-1} Q_1^T b \). Now we have a \(z \) that satisfies \(Rz = Q^T b \): \(z = [z_1^T, 0]^T \). We get the corresponding \(x \) from \(x = Pz \):

\[
x = P \begin{bmatrix} R_1^{-1} Q_1^T b \\ 0 \end{bmatrix}.
\]

This \(x \) satisfies \(Ax = b \), provided we have \(Q_2^T b = 0 \). Whew.

Actually, the construction outlined above is pretty much what \(A \backslash b \) does.
In Matlab, we can carry out this construction as follows:

```
[m,n]=size(A);
[Q,R,P]=qr(A); % full QR factorization
r=rank(A); % could also get rank directly from QR factorization ...

% construct the submatrices
Q1=Q(:,1:r);
Q2=Q(:,r+1:m);
R1=R(1:r,1:r);

% check if b is in range(A)
norm(Q2'*b) % if this is zero or very small, b is in range(A)

% construct a solution
x=P*[R1\(Q1'*b); zeros(n-r,1)]; % satisfies Ax=b, if b is in range(A)

% check alleged solution (just to be sure)
norm(A*x-b)
```