Low Rank Approximation and Extremal Gain Problems

These notes pull together some similar results that depend on partial or truncated SVD or eigenvector expansions.

1 Low rank approximation

In lecture 15 we considered the following problem. We are given a matrix $A \in \mathbb{R}^{m \times n}$ with rank r, and we want to find the nearest matrix $\hat{A} \in \mathbb{R}^{m \times n}$ with rank p (with $p \leq r$), where ‘nearest’ is measured by the matrix norm, i.e., $\|A - \hat{A}\|$. We found that a solution is

$$\hat{A} = \sum_{i=1}^{p} \sigma_i u_i v_i^T,$$

where

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T$$

is the SVD of A. The matrix \hat{A} need not be the only rank p matrix that is closest to A; there can be other matrices, also of rank p, that satisfy $\|A - \tilde{A}\| = \|A - \hat{A}\| = \sigma_{p+1}$.

It turns out that the same matrix \hat{A} is also the nearest rank p matrix to A, as measured in the Frobenius norm, i.e.,

$$\|A - \hat{A}\|_F = \left(\text{Tr}((A - \hat{A})^T(A - \hat{A}))\right)^{1/2} = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} (A_{ij} - \hat{A}_{ij})^2\right)^{1/2}.$$

(The Frobenius norm is just the Euclidean norm of the matrix, written out as a long column vector.) In this case, however, \hat{A} is the unique rank p closest matrix to A, as measured in the Frobenius norm.

2 Nearest positive semidefinite matrix

Suppose that $A = A^T \in \mathbb{R}^{n \times n}$, with eigenvalue decomposition

$$A = \sum_{i=1}^{n} \lambda_i q_i q_i^T,$$

where $\{q_1, \ldots, q_n\}$ are orthonormal, and $\lambda_1 \geq \cdots \geq \lambda_n$. Consider the problem of finding a nearest positive semidefinite matrix, i.e., a matrix $\hat{A} = \hat{A}^T \geq 0$ that minimizes $\|A - \hat{A}\|$. A
solution to this problem is
\[\hat{A} = A = \sum_{i=1}^{n} \max\{\lambda_i, 0\} q_i q_i^T. \]

Thus, to get a nearest positive semidefinite matrix, you simply remove the terms in the eigenvector expansion that correspond to negative eigenvalues. The matrix \(\hat{A} \) is sometimes called the positive semidefinite part of \(A \).

As you might guess, the matrix \(\hat{A} \) is also the nearest positive semidefinite matrix to \(A \), as measured in the Frobenius norm.

3 Extremal gain problems

Suppose \(A \in \mathbb{R}^{m \times n} \) has SVD
\[A = \sum_{i=1}^{r} \sigma_i u_i v_i^T. \]

You already know that \(v = v_1 \) maximizes \(\|Ax\| \) over all \(x \) with norm one. In other words, \(v_1 \) defines a direction of maximum gain for \(A \). We can also find a direction of minimum gain. If \(r < n \), then any unit vector \(x \) in \(\mathcal{N}(A) \) minimizes \(\|Ax\| \). If \(r = n \), then the vector \(v_n \) minimizes \(\|Ax\| \) among all vectors of norm one.

These results can be extended to finding subspaces on which \(A \) has large or small gain. Let \(\mathcal{V} \) be a subspace of \(\mathbb{R}^n \). We define the minimum gain of \(A \in \mathbb{R}^{m \times n} \) on \(\mathcal{V} \) as \(\min\{\|Ax\| \mid x \in \mathcal{V}, \|x\| = 1\} \). We can then pose the question: find a subspace of dimension \(p \), on which \(A \) has the largest possible minimum gain. The solution is what you’d guess, provided \(p \leq r \):
\[\mathcal{V} = \text{span}\{v_1, \ldots, v_p\}, \]

the span of the right singular vectors associated with the \(p \) largest singular values. The minimum gain of \(A \) on this subspace is \(\sigma_p \).

If \(p > r \), then any subspace of dimension \(p \) intersects the nullspace of \(A \), and therefore has minimum gain zero. So when \(p > r \) you can take \(\mathcal{V} \) as any subspace of dimension \(p \); they all have the same minimum gain, namely, zero.

We can also find a subspace \(\mathcal{V} \) of dimension \(p \) that has the smallest maximum gain of \(A \), defined as \(\max\{\|Ax\| \mid x \in \mathcal{V}, \|x\| = 1\} \). Assuming \(r = n \) (i.e., \(A \) has nullspace \{0\}), one such subspace is
\[\mathcal{V} = \text{span}\{v_{r-p+1}, \ldots, v_r\}, \]

the span of the right singular vectors associated with the \(p \) smallest singular values.

We can put state these results in a more concrete form using matrices. To define a subspace of dimension \(p \) we use an orthonormal basis, \(\mathcal{V} = \text{span}\{q_1, \ldots, q_p\} \). Defining \(Q = [q_1 \cdots q_p] \), we have \(Q^TQ = I_p \), where \(I_p \) is the \(p \times p \) identity matrix. We can express the minimum gain of \(A \) on \(\mathcal{V} \) as
\[\sigma_{\text{min}}(AQ). \]
The problem of finding a subspace of dimension p that maximizes the minimum gain of A can be stated as

\[
\begin{align*}
\text{maximize} & \quad \sigma_{\min}(AQ) \\
\text{subject to} & \quad Q^TQ = I_p.
\end{align*}
\]

One solution to this problem is $Q = [v_1 \cdots v_p]$.

4 Extremal trace problems

Let $A \in \mathbb{R}^{n \times n}$ be symmetric, with eigenvalue decomposition $A = \sum_{i=1}^{n} \lambda_i q_i q_i^T$, with $\lambda_1 \geq \cdots \geq \lambda_n$, and $\{q_1, \ldots, q_n\}$ orthonormal. You know that a solution of the problem

\[
\begin{align*}
\text{minimize} & \quad x^T A x \\
\text{subject to} & \quad x^T x = 1,
\end{align*}
\]

where the variable is $x \in \mathbb{R}^n$, is $x = q_n$. The related maximization problem is

\[
\begin{align*}
\text{maximize} & \quad x^T A x \\
\text{subject to} & \quad x^T x = 1,
\end{align*}
\]

with variable $x \in \mathbb{R}^n$. A solution to this problem is $x = q_1$.

Now consider the following generalization of the first problem:

\[
\begin{align*}
\text{minimize} & \quad \text{Tr}(X^T A X) \\
\text{subject to} & \quad X^T X = I_k,
\end{align*}
\]

where the variable is $X \in \mathbb{R}^{n \times k}$, and I_k denotes the $k \times k$ identity matrix, and we assume $k \leq n$. (The constraint means that the columns of X are orthonormal.) A solution of this problem is $X = [q_{n-k+1} \cdots q_n]$. Note that when $k = 1$, this reduces to the first problem above.

The related maximization problem is

\[
\begin{align*}
\text{maximize} & \quad \text{Tr}(X^T A X) \\
\text{subject to} & \quad X^T X = I_k,
\end{align*}
\]

with variable $X \in \mathbb{R}^{n \times k}$. A solution of this problem is $X = [q_1 \cdots q_k]$.