Vectors in Julia

main topics:

- how to create and manipulate vectors in Julia
- how Julia notation differs from math notation
 Scalars

- represented by two types, Int64 and Float64

  ```
  a = 1
  b = 0.5
  ```

- usually the types work together correctly, for example

  ```
  1 + 0.5
  ```

 produces a float
Outline

Vectors

Vector operations

Norm and distance
Vectors

- Vectors are represented by arrays in Julia.
- To create the 3-vector:

 \[x = (8, -4, 3.5) = \begin{bmatrix} 8 \\ -4 \\ 3.5 \end{bmatrix} \]

 Use
 \[x = [8, -4, 3.5] \]
 (\(x = [8; -4; 3.5] \) also works)

- Watch out for similar looking expressions:
 - \((8, -4, 3.5)\) and \([8, -4, 3.5]\) mean something else
 - \([8 \ -4 \ 3.5]\) is a row vector (later)

- Length of an array: \texttt{length}(x)
Indexing and slicing

- indexes run from 1 to \(n \): \(x_2 \) is \(x[2] \)
- can also set an element, e.g., \(x[3] = 10.5 \)
- use a range to select more than one element
- \(x[2:3] \) selects the second and third elements
- to select every other element use \(x[1:2:end] \)
Block vectors

- to form a stacked vector like

\[a = (b, c) = \begin{bmatrix} b \\ c \end{bmatrix} \]

(with \(b\) and \(c\) vectors)

\[a = [b; \ c] \]

- can mix vectors and scalars:

\[a = [b, \ 2, \ c, \ -6] \]
Basic functions for arrays

- sum of (the entries of) a vector: \(\text{sum}(x) \)
- mean of the entries (\(\text{avg}(x) \)): \(\text{mean}(x) \)
- \(0_n \) is \(\text{zeros}(n) \)
- \(1_n \) is \(\text{ones}(n) \)
Creating unit vectors

- form e_3 with length 10
- create a zero vector of size 10 then set the third element to 1

 $e_3 = \text{zeros}(10); \; e_3[3] = 1;$

Julia array types

- an array's type is the most specific given its elements
- consider arr1 = [100, 7, -83] and arr2 = [4.5, -10, 13]
- arr1 is an Int array while arr2 is a Float array
- arr1[2] = 0.1 will error because arr1 can only store Ints
- to make arr1 a Float array, give one entry a decimal point
 arr1 = [100., 7, -83]
List of vectors

- to form a list with vectors a, b, and c:
 \[
 \text{vector_list} = \text{Any}[a,b,c]
 \]
- the second vector in this list is \(\text{vector_list}[2] \)
- to access an element in a vector: \(\text{vector_list}[2][3] \)
do not mix mathematical notation with Julia notation
notations are not compatible, for example
\[v = (0, 1, 1) \]
produces a tuple, not an array (vector)

similarly,
\[v = [1, 10, 7] \]
defines an array (vector) in Julia, but isn’t mathematically correct
Outline

Vectors

Vector operations

Norm and distance
Vector addition and subtraction

- Vector addition uses +, for example

\[
\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}
+ \begin{bmatrix}
4 \\
5 \\
6
\end{bmatrix}
\]

is written

\[[1, 2, 3] + [4, 5, 6] \]

- Subtraction uses -

- The arrays must have the same length (unless one is scalar)
Scalar-vector addition

- in Julia, a scalar and a vector can be added
- the scalar is added to each entry of the vector

\[
\begin{bmatrix} 2 & 4 & 8 \end{bmatrix} + 3
\]
gives (in mathematical notation)

\[
\begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix} + 3 \mathbf{1} = \begin{bmatrix} 5 \\ 7 \\ 11 \end{bmatrix}
\]
Scalar-vector multiplication uses *

- for example,

\[-2 \begin{bmatrix} 1 \\ 9 \\ 6 \end{bmatrix}\]

is written
\[-2 \times [1, 9, 6]\]

- the other order gives the same result:

\[[1, 9, 6] \times -2\]
Inner product

- inner product $a^T b$ is written as $\text{dot}(a, b)$
 which returns a scalar (Int or Float)
- a and b must have the same length
Outline

Vectors

Vector operations

Norm and distance
Norm and distance

- The norm $\|x\| = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$ is written $\text{norm}(x)$.
- $\text{dist}(x, y) = \|x - y\|$ is written $\text{norm}(x-y)$.
RMS value

- $\text{rms}(x)$ is defined as

$$\text{rms}(x) = \sqrt{\frac{1}{n} (x_1^2 + \cdots + x_n^2)} = \frac{\|x\|}{\sqrt{n}}.$$

- can be expressed as

$$\text{rms}_x = \text{norm}(x)/\text{sqrt}(\text{length}(x))$$
Standard deviation

- standard deviation is defined as
 \[
 \text{std}(x) = \frac{\|x - \text{avg}(x)1\|}{\sqrt{n}}
 \]

- which can be expressed as
 \[
 \text{std}_\text{of}_x = \text{norm}(x - \text{mean}(x))/\sqrt{\text{length}(x)}
 \]

- warning: the Julia function std uses the slightly different definition

 \[
 \text{std}(x) = \frac{\|x - \text{avg}(x)1\|}{\sqrt{n - 1}}
 \]
the angle between two vectors a and b is

$$\angle(a, b) = \arccos\left(\frac{a^T b}{\|a\| \|b\|}\right)$$

can be expressed as

$$\text{angle}_a_b = \cos(\text{dot}(a, b)/(\text{norm}(a) * \text{norm}(b)))$$
Nearest neighbor example

Compares vectors in vector_list against a_vector
and returns the index of the one which is closest
function nearest_neighbor(vector_list, a_vector)
 closest_distance = Inf
 closest_index = 0
 for i in 1:length(vector_list)
 ith_distance = norm(vector_list[i] - a_vector)
 if (ith_distance < closest_distance)
 closest_distance = ith_distance
 closest_index = i
 end
 end
 return closest_index
end