Matrix inverses in Julia

David Zeng Keegan Go Stephen Boyd

EE263
Stanford University

October 1, 2015
Matrix inverses in Julia

- QR factorization
- inverse
- pseudo-inverse
- backslash operator
the qr command finds the QR factorization of a matrix
\[A = \text{rand}(5, 3) \]
\[Q, R = \text{qr}(A) \]

when columns of \(n \times k \) matrix \(A \) are independent, qr is same as ours

when columns are dependent, qr is not same as ours
- \(A = QR, Q^TQ = I \), and \(R_{ij} = 0 \) for \(i > j \) always holds
- \(R \) can have zero or negative diagonal entries
- \(R \) is not square when \(A \) is wide
Checking linear independence with Julia’s QR

- let’s check if columns of A are linearly independent
- A must be tall or square
- columns are linearly independent if and only if R has no 0 diagonal entries
- check if columns of (tall or square) A are linearly independent:

  ```julia
  a1 = rand(5)
  a2 = rand(5)
  A = [a1 a2 a1+a2] # linearly dependent columns
  Q, R = qr(A)
  # find the entry of diagonal of R closest to 0
  # R can have negative entries
  minimum(abs(diag(R)))
  ```
Inverse

- `inv(A)` returns the inverse matrix A^{-1}
- Julia will issue an error if
 - A is not square
 - A is not invertible
- You can solve square set of linear equations $Ax = b$, with invertible A, using

  ```
  b = rand(5,1)
  A = rand(5,5)
  x = inv(A)*b
  norm(A*x-b)  # check residual
  ```
 but there is a better way, using backslash
Pseudo-inverse

- for a $m \times n$ matrix A, $\text{pinv}(A)$ will return the $n \times m$ pseudo-inverse
- if A is square and invertible
 - $\text{pinv}(A)$ will return the inverse A^{-1}
- if A is tall with linearly independent columns
 - $\text{pinv}(A)$ will return the left inverse $(A^T A)^{-1} A^T$
- if A is wide with linearly independent rows
 - $\text{pinv}(A)$ will return the right inverse $A^T (AA^T)^{-1}$
- in other cases, $\text{pinv}(A)$ returns an $m \times n$ matrix, but
 - it is not a left or right inverse of A
 - what it is is beyond the scope of this class
The backslash operator

- given A and b, the \ operator solves the linear system $Ax = b$ for x
- for a $m \times n$ matrix A and a m-vector b, $A\backslash b$ returns a n-vector x
- if A is square and invertible
 - $x = A^{-1}b$
 - the unique solution of $Ax = b$
- if A is tall with linearly independent columns
 - $x = (A^T A)^{-1} A^T b$
 - the least squares approximate solution of $Ax = b$
- if A is wide with linearly independent rows
 - $x = A^T (AA^T)^{-1} b$
 - x is the least norm solution of $Ax = b$
- in other cases, $A\backslash b$ returns an n-vector x, but what it means is beyond the scope of this class
- uses a factor and solve method similar to QR
Solving matrix systems with backslash

- solve matrix equation $AX = B$ for X, with A square
- with $X = [x_1 \cdots x_k]$, $B = [b_1 \cdots b_k]$, same as solving k linear systems

$$Ax_1 = b_1, \ldots, Ax_k = b_k$$

- $X = A\backslash B$ solves the system, doing the right thing:
 - factor A once (order n^3)
 - back substitution to get $x_i = A^{-1}b_i, i = 1, \ldots, k$ (order kn^2)