Derivative, Gradient, and Lagrange Multipliers

Derivative

Suppose $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is differentiable. Its derivative or Jacobian at a point $x \in \mathbb{R}^n$ is denoted $Df(x) \in \mathbb{R}^{m \times n}$, defined as

$$(Df(x))_{ij} = \left. \frac{\partial f_i}{\partial x_j} \right|_x, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n.$$

The first order Taylor expansion of f at (or near) x is given by

$$\hat{f}(y) = f(x) + Df(x)(y - x).$$

When $y - x$ is small, $f(y) - \hat{f}(y)$ is very small. This is called the linearization of f at (or near) x.

As an example, consider $n = 3$, $m = 2$, with

$$f(x) = \begin{bmatrix} x_1 - x_2^2 \\ x_1 x_3 \end{bmatrix}.$$

Its derivative at the point x is

$$Df(x) = \begin{bmatrix} 1 & -2x_2 & 0 \\ x_3 & 0 & x_1 \end{bmatrix},$$

and its first order Taylor expansion near $x = (1, 0, -1)$ is given by

$$\hat{f}(y) = \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix}.$$

Gradient

For $f : \mathbb{R}^n \rightarrow \mathbb{R}$, the gradient at $x \in \mathbb{R}^n$ is denoted $\nabla f(x) \in \mathbb{R}^n$, and it is defined as $\nabla f(x) = Df(x)^T$, the transpose of the derivative. In terms of partial derivatives, we have

$$\nabla f(x)_i = \left. \frac{\partial f}{\partial x_i} \right|_x, \quad i = 1, \ldots, n.$$

The first order Taylor expansion of f at x is given by

$$\hat{f}(x) = f(x) + \nabla f(x)^T(y - x).$$
Gradient of affine and quadratic functions

You can check the formulas below by working out the partial derivatives.

For \(f \) affine, i.e., \(f(x) = a^T x + b \), we have \(\nabla f(x) = a \) (independent of \(x \)).

For \(f \) a quadratic form, i.e., \(f(x) = x^T P x \) with \(P \in \mathbb{R}^{n \times n} \), we have \(\nabla f(x) = (P + P^T)x \).

When \(P \) is symmetric, this simplifies to \(\nabla f(x) = 2P x \).

We can use these basic facts and some simple calculus rules, such as linearity of gradient operator (the gradient of a sum is the sum of the gradients, and the gradient of a scaled function is the scaled gradient) to find the gradient of more complex functions. For example, let’s compute the gradient of

\[
\begin{align*}
 f(x) &= (1/2)\|Ax - b\|^2 + c^T x,
\end{align*}
\]

with \(A \in \mathbb{R}^{m \times n} \). We expand the first term to get

\[
\begin{align*}
 f(x) &= (1/2)x^T (A^T A)x - b^T Ax + (1/2)b^T b + c^T x,
\end{align*}
\]

and now use the rules above to get

\[
\begin{align*}
 \nabla f(x) &= A^T Ax - A^T b + c = A^T (Ax - b) + c.
\end{align*}
\]

Minimizing a function

Suppose \(f : \mathbb{R}^n \to \mathbb{R} \), and we want to choose \(x \) so as to minimize \(f(x) \). Assuming \(f \) is differentiable, any optimal \(x \) (and it’s possible that there isn’t an optimal \(x \)) must satisfy \(\nabla f(x) = 0 \). The converse is false: \(\nabla f(x) = 0 \) does not mean that \(x \) minimizes \(f \). Such a point is actually a stationary point, and could be a saddle point or a maximum of \(f \), or a local minimum. We refer to \(\nabla f(x) = 0 \) as an optimality condition for minimizing \(f \). It is necessary, but not sufficient, for \(x \) to minimize \(f \).

We use this result as follows. To minimize \(f \), we find all points that satisfy \(\nabla f(x) = 0 \). If there is a point that minimizes \(f \), it must be one of these.

Example: Least-squares. Suppose we want to choose \(x \in \mathbb{R}^n \) to minimize \(\|Ax - b\| \), where \(A \in \mathbb{R}^{m \times n} \) is skinny and full rank. This is the same as minimizing \(f(x) = (1/2)\|Ax - b\|^2 \). The optimality condition is

\[
\begin{align*}
 \nabla f(x) &= A^T Ax - A^T b = 0.
\end{align*}
\]

Only one value of \(x \) satisfies this equation: \(x_{ls} = (A^T A)^{-1} A^T b \).

We have to use other methods to determine that \(f \) is actually minimized (and not, say, maximized) by \(x_{ls} \). Here is one method. For any \(z \), we have

\[
\begin{align*}
 (A z)^T (A x_{ls} - b) = z^T (A^T A x_{ls} - A^T b) = 0,
\end{align*}
\]

\[
\begin{align*}
 \frac{d}{dx} f(x) &= (1/2)\left(2(A^T A)x + 2b^T A \right) = A^T A x + b^T A,
\end{align*}
\]

where the gradient operator is reflected.

\[
\begin{align*}
 \nabla f(x) &= \left(\frac{d}{dx} f(x) \right)_x = A^T A x + b^T A.
\end{align*}
\]

We can use these basic facts and some simple calculus rules, such as linearity of gradient operator (the gradient of a sum is the sum of the gradients, and the gradient of a scaled function is the scaled gradient) to find the gradient of more complex functions. For example, let’s compute the gradient of

\[
\begin{align*}
 f(x) &= (1/2)\|Ax - b\|^2 + c^T x,
\end{align*}
\]

with \(A \in \mathbb{R}^{m \times n} \). We expand the first term to get

\[
\begin{align*}
 f(x) &= (1/2)x^T (A^T A)x - b^T Ax + (1/2)b^T b + c^T x,
\end{align*}
\]

and now use the rules above to get

\[
\begin{align*}
 \nabla f(x) &= A^T Ax - A^T b + c = A^T (Ax - b) + c.
\end{align*}
\]
so $Az \perp Ax_{ls} - b$. Now we note that

$$
\|Ax - b\|^2 = \|Ax_{ls} - b + A(x - x_{ls})\|^2 \\
= \|Ax_{ls} - b\|^2 + 2(A(x - x_{ls}))^T(Ax_{ls} - b) + \|A(x - x_{ls})\|^2 \\
\geq \|Ax_{ls} - b\|^2
$$

using the orthogonality result above. So this shows that x_{ls} really does minimize f. With this argument, we really didn’t need the optimality condition. But the optimality condition gave us a quick way to find the answer, if not verify it.

Lagrange multipliers

Suppose we want to solve the constrained optimization problem

$$
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g(x) = 0,
\end{align*}
$$

where $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}^p$.

Lagrange introduced an extension of the optimality condition above for problems with constraints. We first form the *Lagrangian*

$$
L(x, \lambda) = f(x) + \lambda^T g(x),
$$

where $\lambda \in \mathbb{R}^p$ is called the *Lagrange multiplier*. The (necessary, but not sufficient) optimality conditions are

$$
\nabla_x L(x, \lambda) = 0, \quad \nabla_{\lambda} L(x, \lambda) = g(x) = 0.
$$

These two conditions are called the KKT (Kharush-Kuhn-Tucker) equations. The second condition is not very interesting; we already knew that the optimal x must satisfy $g(x) = 0$. The first is interesting, however.

To solve the constrained problem, we attempt to solve the KKT equations. The optimal point (if one exists) must satisfy the KKT equations.

Example: Linearly constrained least-squares. Consider the linearly constrained least-squares problem (see lecture slides 8)

$$
\begin{align*}
\text{minimize} & \quad (1/2)\|Ax - b\|^2 \\
\text{subject to} & \quad Cx - d = 0
\end{align*}
$$

with $A \in \mathbb{R}^{m \times n}$ and $C \in \mathbb{R}^{p \times n}$. The Lagrangian is

$$
L(x, \lambda) = (1/2)\|Ax - b\|^2 + \lambda^T (Cx - d) \\
= (1/2)x^T A A x - b^T A x + (1/2)b^T b + (C^T \lambda)^T x - \lambda^T d.
$$
The KKT conditions are
\[
\nabla_x L(x, \lambda) = A^T Ax - A^T b + C^T \lambda = 0, \quad \nabla_\lambda L(x, \lambda) = Cx - d = 0.
\]
These are a set of \(n + p\) linear equations in \(n + p\) variables, which we can write as
\[
\begin{bmatrix}
A^T A & C^T \\
C & 0
\end{bmatrix}
\begin{bmatrix}
x \\
\lambda
\end{bmatrix}
=
\begin{bmatrix}
A^T b \\
d
\end{bmatrix}.
\]
If the matrix on the left is invertible, this has one solution,
\[
\begin{bmatrix}
x^* \\
\lambda^*
\end{bmatrix}
=
\begin{bmatrix}
A^T A & C^T \\
C & 0
\end{bmatrix}^{-1}
\begin{bmatrix}
A^T b \\
d
\end{bmatrix}.
\]

As in the least-squares example above, you have to use another argument to show that \(x^*\) found this way actually minimizes \(f\) subject to \(Cx = d\). We don’t expect you to be able to come up with this argument, but here’s how it goes. Suppose that \(z\) satisfies \(Cz = 0\). Then
\[
(Az)^T (Ax^* - b) = z^T (A^T Ax^* - A^T b) = z^T (-C^T \lambda^*) = -(Cz)^T \lambda^* = 0,
\]
so \((Az) \perp (Ax^* - b)\). Using exactly the same calculation as for least-squares above, we get
\[
\|Ax - b\|^2 \geq \|Ax^* - b\|^2,
\]
which shows that \(x^*\) does indeed minimize \(\|Ax - b\|\) subject to \(Cx = d\).