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Symmetric matrices and quadratic forms

I eigenvectors of symmetric matrices

I quadratic forms

I inequalities for quadratic forms

I positive semidefinite matrices
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Eigenvalues of symmetric matrices

if A ∈ Rn×n is symmetric, i.e., A = AT, then the eigenvalues of A are real

to see this, suppose Av = λv, v 6= 0, v ∈ Cn, then

vTAv = vT(Av) = λvTv = λ
n∑

i=1

|vi|2

but also

vTAv = (Av)
T
v = (λv)

T
v = λ

n∑
i=1

|vi|2

so we have λ = λ, i.e., λ ∈ R (hence, can assume v ∈ Rn)
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Eigenvectors of symmetric matrices

there is a set of n orthonormal eigenvectors of A

I i.e., q1, . . . , qn s.t. Aqi = λiqi, q
T
i qj = δij

I in matrix form: there is an orthogonal Q s.t.

Q−1AQ = QTAQ = Λ

I hence we can express A as

A = QΛQT =

n∑
i=1

λiqiq
T
i

I in particular, qi are both left and right eigenvectors
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Interpretations

A = QΛQT corresponds to

x QTx ΛQTx Ax
QT QΛ

linear mapping y = Ax can be decomposed as

I resolve into qi coordinates

I scale coordinates by λi

I reconstitute with basis qi
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Geometrical interpretation

multiplication by A is the same as

I rotate by QT

I diagonal real scale (‘dilation’) by Λ

I rotate back by Q

decomposition

A =

n∑
i=1

λiqiq
T
i

expresses A as linear combination of 1-dimensional projections

5



Example:

A =

[
−1/2 3/2
3/2 −1/2

]

=

(
1√
2

[
1 1
1 −1

])[
1 0
0 −2

](
1√
2

[
1 1
1 −1

])T

x

q1

q2

q1q
T

1 x

q2q
T

2 x

λ2q2q
T

2 x

λ1q1q
T

1 x

Ax
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Proof

eigenvectors corresponding to distinct eigenvalues are orthogonal

I since λi distinct, have v1, . . . , vn, a set of linearly independent eigenvectors
of A

Avi = λivi, ‖vi‖ = 1

I then vTi (Avj) = λjv
T
i vj = (Avi)

Tvj = λiv
T
i vj

I and (λi − λj)v
T
i vj = 0

I for i 6= j, λi 6= λj , hence vTi vj = 0

I in this case we can say: eigenvectors are orthogonal

I in general case (λi not distinct) we must say: eigenvectors can be chosen to
be orthogonal
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Quadratic forms

a quadratic form is a function f : Rn → R of the form

f(x) = xTAx =
n∑

i,j=1

Aijxixj

I in a quadratic form we may as well assume A = AT since

xTAx = xT((A+AT)/2)x

((A+AT)/2 is called the symmetric part of A)

I uniqueness: if xTAx = xTBx for all x ∈ Rn and A = AT, B = BT, then
A = B
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Examples

quadratic forms

I ‖Bx‖2 = xTBTBx

I
∑n−1

i=1 (xi+1 − xi)2

I ‖Fx‖2 − ‖Gx‖2

sets defined by quadratic forms:

I { x | f(x) = a } is called a quadratic surface

I { x | f(x) ≤ a } is called a quadratic region
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Inequalities for quadratic forms

suppose A = AT, A = QΛQT with eigenvalues sorted so λ1 ≥ · · · ≥ λn then

xTAx ≤ λ1x
Tx

because

xTAx = xTQΛQTx

= (QTx)TΛ(QTx)

=
n∑

i=1

λi(q
T
i x)2

≤ λ1

n∑
i=1

(qTi x)2

= λ1‖x‖2
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Inequalities

I similar argument shows xTAx ≥ λn‖x‖2, so we have

λnx
Tx ≤ xTAx ≤ λ1x

Tx

I sometimes λ1 is called λmax, λn is called λmin

I note also that

qT1Aq1 = λ1‖q1‖2, qTnAqn = λn‖qn‖2,

so the inequalities are tight
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Positive semidefinite and positive definite matrices

suppose A = AT ∈ Rn×n

we say A is positive semidefinite if xTAx ≥ 0 for all x

I this is written A ≥ 0 (and sometimes A � 0)

I A ≥ 0 if and only if λmin(A) ≥ 0, i.e., all eigenvalues are nonnegative

I not the same as Aij ≥ 0 for all i, j

we say A is positive definite if xTAx > 0 for all x 6= 0

I denoted A > 0

I A > 0 if and only if λmin(A) > 0, i.e., all eigenvalues are positive
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Matrix inequalities

I we say A is negative semidefinite if −A ≥ 0

I we say A is negative definite if −A > 0

I otherwise, we say A is indefinite

matrix inequality: if A and B are both symmetric, we use A < B to mean
B −A > 0.

I many variations, for example A ≥ B means A−B ≥ 0,

I A > B means xTAx > xTBx for all x 6= 0
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Matrix inequalities

many properties that you’d guess hold actually do, e.g.,

I if A ≥ B and C ≥ D, then A+ C ≥ B +D

I if B ≤ 0 then A+B ≤ A

I if A ≥ 0 and α ≥ 0, then αA ≥ 0

I A2 ≥ 0

I if A > 0, then A−1 > 0

matrix inequality is only a partial order: we can have

A 6≥ B, B 6≥ A

(such matrices are called incomparable)
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