EE263 Autumn 2015 S. Boyd and S. Lall

Symmetric matrices and quadratic forms

- ▶ eigenvectors of symmetric matrices
- quadratic forms
- ▶ inequalities for quadratic forms
- ▶ positive semidefinite matrices

Eigenvalues of symmetric matrices

if $A \in \mathbb{R}^{n \times n}$ is symmetric, *i.e.*, $A = A^{\mathsf{T}}$, then the eigenvalues of A are real

to see this, suppose $Av=\lambda v$, $v\neq 0$, $v\in\mathbb{C}^n$, then

$$\overline{v}^{\mathsf{T}} A v = \overline{v}^{\mathsf{T}} (A v) = \lambda \overline{v}^{\mathsf{T}} v = \lambda \sum_{i=1}^{n} |v_i|^2$$

but also

$$\overline{v}^{\mathsf{T}} A v = \overline{(A v)}^{\mathsf{T}} v = \overline{(\lambda v)}^{\mathsf{T}} v = \overline{\lambda} \sum_{i=1}^{n} |v_i|^2$$

so we have $\lambda=\overline{\lambda}$, i.e., $\lambda\in\mathbb{R}$ (hence, can assume $v\in\mathbb{R}^n$)

Eigenvectors of symmetric matrices

there is a set of n orthonormal eigenvectors of A

- \blacktriangleright i.e., q_1, \ldots, q_n s.t. $Aq_i = \lambda_i q_i, \ q_i^\mathsf{T} q_j = \delta_{ij}$
- ▶ in matrix form: there is an orthogonal Q s.t.

$$Q^{-1}AQ = Q^{\mathsf{T}}AQ = \Lambda$$

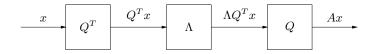
ightharpoonup hence we can express A as

$$A = Q\Lambda Q^{\mathsf{T}} = \sum_{i=1}^{n} \lambda_i q_i q_i^{\mathsf{T}}$$

 \blacktriangleright in particular, q_i are both left and right eigenvectors

Interpretations

 $A = Q \Lambda Q^{\mathsf{T}}$ corresponds to



linear mapping y=Ax can be decomposed as

- ightharpoonup resolve into q_i coordinates
- ightharpoonup scale coordinates by λ_i
- ightharpoonup reconstitute with basis q_i

Geometrical interpretation

multiplication by A is the same as

- ightharpoonup rotate by Q^{T}
- lacktriangle diagonal real scale ('dilation') by Λ
- lacktriangleright rotate back by Q

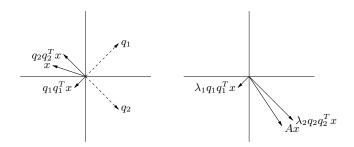
decomposition

$$A = \sum_{i=1}^{n} \lambda_i q_i q_i^{\mathsf{T}}$$

expresses A as linear combination of 1-dimensional projections

Example:

$$A = \begin{bmatrix} -1/2 & 3/2 \\ 3/2 & -1/2 \end{bmatrix}$$
$$= \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}\right) \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}\right)^{\mathsf{T}}$$



Proof

eigenvectors corresponding to distinct eigenvalues are orthogonal

lacktriangleright since λ_i distinct, have v_1,\ldots,v_n , a set of linearly independent eigenvectors of A

$$Av_i = \lambda_i v_i, \qquad ||v_i|| = 1$$

- ▶ then $v_i^\mathsf{T}(Av_j) = \lambda_j v_i^\mathsf{T} v_j = (Av_i)^\mathsf{T} v_j = \lambda_i v_i^\mathsf{T} v_j$
- ightharpoonup and $(\lambda_i \lambda_j)v_i^\mathsf{T}v_j = 0$
- for $i \neq j$, $\lambda_i \neq \lambda_j$, hence $v_i^\mathsf{T} v_j = 0$
- ▶ in this case we can say: eigenvectors are orthogonal
- in general case (λ_i not distinct) we must say: eigenvectors *can be chosen* to be orthogonal

Quadratic forms

a *quadratic form* is a function $f: \mathbb{R}^n \to \mathbb{R}$ of the form

$$f(x) = x^{\mathsf{T}} A x = \sum_{i,j=1}^{n} A_{ij} x_i x_j$$

ightharpoonup in a quadratic form we may as well assume $A=A^{\mathsf{T}}$ since

$$x^{\mathsf{T}} A x = x^{\mathsf{T}} ((A + A^{\mathsf{T}})/2) x$$

 $((A + A^{\mathsf{T}})/2 \text{ is called the } \textit{symmetric part} \text{ of } A)$

▶ uniqueness: if $x^{\mathsf{T}}Ax = x^{\mathsf{T}}Bx$ for all $x \in \mathbb{R}^n$ and $A = A^{\mathsf{T}}$, $B = B^{\mathsf{T}}$, then A = B

Examples

quadratic forms

- $||Bx||^2 = x^\mathsf{T} B^\mathsf{T} B x$
- $\sum_{i=1}^{n-1} (x_{i+1} x_i)^2$
- $ightharpoonup ||Fx||^2 ||Gx||^2$

sets defined by quadratic forms:

- $lackbox\{ x \mid f(x) = a \ \}$ is called a *quadratic surface*
- ▶ $\{x \mid f(x) \leq a\}$ is called a *quadratic region*

Inequalities for quadratic forms

suppose $A = A^{\mathsf{T}}$, $A = Q\Lambda Q^{\mathsf{T}}$ with eigenvalues sorted so $\lambda_1 \geq \cdots \geq \lambda_n$ then

$$x^{\mathsf{T}} A x \le \lambda_1 x^{\mathsf{T}} x$$

because

$$x^{\mathsf{T}} A x = x^{\mathsf{T}} Q \Lambda Q^{\mathsf{T}} x$$

$$= (Q^{\mathsf{T}} x)^{\mathsf{T}} \Lambda (Q^{\mathsf{T}} x)$$

$$= \sum_{i=1}^{n} \lambda_i (q_i^{\mathsf{T}} x)^2$$

$$\leq \lambda_1 \sum_{i=1}^{n} (q_i^{\mathsf{T}} x)^2$$

$$= \lambda_1 ||x||^2$$

Inequalities

▶ similar argument shows $x^{\mathsf{T}}Ax \geq \lambda_n ||x||^2$, so we have

$$\lambda_n x^\mathsf{T} x \le x^\mathsf{T} A x \le \lambda_1 x^\mathsf{T} x$$

- \blacktriangleright sometimes λ_1 is called λ_{\max} , λ_n is called λ_{\min}
- note also that

$$q_1^{\mathsf{T}} A q_1 = \lambda_1 \|q_1\|^2, \qquad q_n^{\mathsf{T}} A q_n = \lambda_n \|q_n\|^2,$$

so the inequalities are tight

Positive semidefinite and positive definite matrices

$$\text{suppose } A = A^\mathsf{T} \in \mathbb{R}^{n \times n}$$

we say A is **positive semidefinite** if $x^{\mathsf{T}}Ax \geq 0$ for all x

- ▶ this is written $A \ge 0$ (and sometimes $A \succeq 0$)
- ▶ $A \ge 0$ if and only if $\lambda_{\min}(A) \ge 0$, *i.e.*, all eigenvalues are nonnegative
- ▶ **not** the same as $A_{ij} \ge 0$ for all i, j

we say A is *positive definite* if $x^{T}Ax > 0$ for all $x \neq 0$

- ightharpoonup denoted A>0
- ▶ A > 0 if and only if $\lambda_{\min}(A) > 0$, *i.e.*, all eigenvalues are positive

Matrix inequalities

- lacktriangle we say A is negative semidefinite if $-A \geq 0$
- we say A is negative definite if -A > 0
- ightharpoonup otherwise, we say A is *indefinite*

 $\mbox{\bf matrix inequality}:$ if A and B are both symmetric, we use A < B to mean B-A > 0.

- lacktriangledown many variations, for example $A \geq B$ means $A-B \geq 0$,
- ightharpoonup A > B means $x^{\mathsf{T}}Ax > x^{\mathsf{T}}Bx$ for all $x \neq 0$

Matrix inequalities

many properties that you'd guess hold actually do, e.g.,

▶ if
$$A \ge B$$
 and $C \ge D$, then $A + C \ge B + D$

- ▶ if $B \le 0$ then $A + B \le A$
- ▶ if $A \ge 0$ and $\alpha \ge 0$, then $\alpha A \ge 0$
- $ightharpoonup A^2 \ge 0$
- if A > 0, then $A^{-1} > 0$

matrix inequality is only a partial order: we can have

$$A \not\geq B$$
, $B \not\geq A$

(such matrices are called incomparable)