Rank

Stephen Boyd and Sanjay Lall

EE263
Stanford University
Rank of a matrix

we define the *rank* of $A \in \mathbb{R}^{m \times n}$ as

$$\text{rank}(A) = \dim \text{range}(A)$$

(nontrivial) facts:

- $\text{rank}(A) = \text{rank}(A^T)$
- $\text{rank}(A)$ is maximum number of independent columns (or rows) of A hence $\text{rank}(A) \leq \min(m, n)$
Rank of a matrix

- \(\text{rank}(A) \) is maximum number of independent columns of \(A \)

 - to see this, notice that if the columns of \(A \) are independent, then the number of columns \(r \) is the rank, since the columns are a basis for the range

 - and if not, then there must be one column in the span of the others, so remove it, and repeat if necessary

 - all other independent sets of columns must have no more than \(r \) elements.

- proof of \(\text{rank}(A) = \text{rank}(A^T) \) uses QR, to come
Conservation of dimension

\[\text{dim range}(A) + \text{dim null}(A) = n \]

- \(\text{rank}(A) \) is dimension of set ‘hit’ by the mapping \(y = Ax \)
- \(\text{dim null}(A) \) is dimension of set of \(x \) ‘crushed’ to zero by \(y = Ax \)
- ‘conservation of dimension’: each dimension of input is either crushed to zero or ends up in output
- roughly speaking:
 - \(n \) is number of degrees of freedom in input \(x \)
 - \(\text{dim null}(A) \) is number of degrees of freedom lost in the mapping from \(x \) to \(y = Ax \)
 - \(\text{rank}(A) \) is number of degrees of freedom in output \(y \)
- proof using QR
Coding interpretation of rank

\[\text{rank}(BC) \leq \min\{\text{rank}(B), \text{rank}(C)\} \]

- hence if \(A = BC \) with \(B \in \mathbb{R}^{m \times r} \), \(C \in \mathbb{R}^{r \times n} \), then \(\text{rank}(A) \leq r \)

- converse: if \(\text{rank}(A) = r \) then \(A \in \mathbb{R}^{m \times n} \) factors as \(A = BC \) with \(B \in \mathbb{R}^{m \times r} \), \(C \in \mathbb{R}^{r \times n} \)

- \(\text{rank}(A) = r \) is minimum size vector needed to faithfully reconstruct \(y \) from \(x \)
Coding interpretation of rank

- \(\text{rank}(BC) \leq \text{rank}(B) \) because \(\text{range}(BC) \subseteq \text{range}(B) \)

- transpose implies \(\text{rank}(BC) \leq \text{rank}(C) \)

- factorization converse comes from QR
Application: fast matrix-vector multiplication

- need to compute matrix-vector product $y = Ax$, $A \in \mathbb{R}^{m \times n}$
- A has known factorization $A = BC$, $B \in \mathbb{R}^{m \times r}$
- computing $y = Ax$ directly: mn operations
- computing $y = Ax$ as $y = B(Cx)$ (compute $z = Cx$ first, then $y = Bz$): $rn + mr = (m + n)r$ operations
- savings can be considerable if $r \ll \min\{m, n\}$
Full rank matrices

for $A \in \mathbb{R}^{m \times n}$ we always have $\text{rank}(A) \leq \min(m, n)$

we say A is full rank if $\text{rank}(A) = \min(m, n)$

- for square matrices, full rank means nonsingular
- for skinny matrices ($m \geq n$), full rank means columns are independent
- for fat matrices ($m \leq n$), full rank means rows are independent