Range and Null Space

Stephen Boyd and Sanjay Lall

EE263
Stanford University
Nullspace of a matrix

the *nullspace* of $A \in \mathbb{R}^{m \times n}$ is defined as

$$\text{null}(A) = \{ x \in \mathbb{R}^n \mid Ax = 0 \}$$

- $\text{null}(A)$ is set of vectors mapped to zero by $y = Ax$
- $\text{null}(A)$ is set of vectors orthogonal to all rows of A

$\text{null}(A)$ gives *ambiguity* in x given $y = Ax$:

- if $y = Ax$ and $z \in \text{null}(A)$, then $y = A(x + z)$
- conversely, if $y = Ax$ and $y = A\tilde{x}$, then $\tilde{x} = x + z$ for some $z \in \text{null}(A)$

$\text{null}(A)$ is also written $\mathcal{N}(A)$
Zero nullspace

\(A \) is called **one-to-one** if 0 is the only element of its nullspace

\[\text{null}(A) = \{0\} \]

Equivalently,

- \(x \) can always be uniquely determined from \(y = Ax \)
 (i.e., the linear transformation \(y = Ax \) doesn't 'lose' information)
- mapping from \(x \) to \(Ax \) is one-to-one: different \(x \)'s map to different \(y \)'s
- columns of \(A \) are independent (hence, a basis for their span)
- \(A \) has a **left inverse**, i.e., there is a matrix \(B \in \mathbb{R}^{n \times m} \) s.t. \(BA = I \)
- \(A^T A \) is invertible
If A has a left inverse then $\text{null}(A) = \{0\}$ (proof by contradiction).

$\text{null}(A) = \text{null}(A^T A)$

If $\text{null}(A) = \{0\}$ then A is left invertible, because $A^T A$ is invertible, so $B = (A^T A)^{-1} A^T$ is a left inverse.
Two interpretations of nullspace

suppose \(z \in \text{null}(A) \), and \(y = Ax \) represents *measurement* of \(x \)

- \(z \) is undetectable from sensors — get zero sensor readings
- \(x \) and \(x + z \) are indistinguishable from sensors: \(Ax = A(x + z) \)

\(\text{null}(A) \) characterizes *ambiguity* in \(x \) from measurement \(y = Ax \)

alternatively, if \(y = Ax \) represents *output* resulting from input \(x \)

- \(z \) is an input with no result
- \(x \) and \(x + z \) have same result

\(\text{null}(A) \) characterizes *freedom of input choice* for given result
Left invertibility and estimation

- apply left-inverse B at output of A
- then estimate $\hat{x} = BAx = x$ as desired
- *non-unique:* both B and C are left inverses of A

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad C = \begin{bmatrix} 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{bmatrix}$$
Range of a matrix

the *range* of $A \in \mathbb{R}^{m \times n}$ is defined as

$$\text{range}(A) = \{Ax \mid x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$$

range(A) can be interpreted as

- the set of vectors that can be ‘hit’ by linear mapping $y = Ax$
- the span of columns of A
- the set of vectors y for which $Ax = y$ has a solution

range(A) is also written $\mathcal{R}(A)$
Onto matrices

A is called onto if $\text{range}(A) = \mathbb{R}^m$ equivalently,

- $Ax = y$ can be solved in x for any y
- columns of A span \mathbb{R}^m
- A has a right inverse, i.e., there is a matrix $B \in \mathbb{R}^{n \times m}$ s.t. $AB = I$
- rows of A are independent
- $\text{null}(A^T) = \{0\}$
- AA^T is invertible
Onto matrices

- if \(\text{range}(A) = \mathbb{R}^m \) then \(A \) is right invertible. To see this, let \(b_i \) be such that \(Ab_i = e_i \), and let \(B = [b_1, \ldots, b_m] \), then \(AB = I \).

- if \(A \) is right invertible, then \(\text{range} \, A = \mathbb{R}^m \), because \(\text{range}(A) \supseteq \text{range}(AB) \)

- \(A \) is left invertible iff \(A^\top \) is right invertible
Interpretations of range

Suppose $v \in \text{range}(A), w \not\in \text{range}(A)$

$y = Ax$ represents \textit{measurement} of x

- $y = v$ is a \textit{possible} or \textit{consistent} sensor signal
- $y = w$ is \textit{impossible} or \textit{inconsistent}; sensors have failed or model is wrong

$y = Ax$ represents \textit{output} resulting from input x

- v is a possible result or output
- w cannot be a result or output

$\text{range}(A)$ characterizes the \textit{possible results} or \textit{achievable outputs}
Right invertibility and control

- apply right-inverse C at *input* of A
- then output $y = ACy_{\text{des}} = y_{\text{des}}$ as desired