Orthogonality
Inner product

\[\langle x, y \rangle := x_1y_1 + x_2y_2 + \cdots + x_ny_n = x^T y \]

important properties:

- \(\langle \alpha x, y \rangle = \alpha \langle x, y \rangle \)
- \(\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle \)
- \(\langle x, y \rangle = \langle y, x \rangle \)
- \(\langle x, x \rangle \geq 0 \)
- \(\langle x, x \rangle = 0 \iff x = 0 \)

\(f(y) = \langle x, y \rangle \) is linear function : \(\mathbb{R}^n \to \mathbb{R} \), with linear map defined by row vector \(x^T \)
Cauchy-Schwarz inequality and angle between vectors

for any $x, y \in \mathbb{R}^n$

\[|x^T y| \leq \|x\|\|y\| \]

► (unsigned) angle between vectors in \mathbb{R}^n defined as

\[\theta = \angle(x, y) = \cos^{-1}\left(\frac{x^T y}{\|x\|\|y\|}\right) \]

► thus $x^T y = \|x\|\|y\| \cos \theta$
Special cases

- **x and y are aligned**: $\theta = 0$; $x^T y = ||x|| ||y||$
 (if $x \neq 0$) $y = \alpha x$ for some $\alpha \geq 0$

- **x and y are opposed**: $\theta = \pi$; $x^T y = -||x|| ||y||$
 (if $x \neq 0$) $y = -\alpha x$ for some $\alpha \geq 0$

- **x and y are orthogonal**: $\theta = \pi/2$ or $-\pi/2$; $x^T y = 0$
 denoted $x \perp y$
Angles

Interpretation of $x^T y > 0$ and $x^T y < 0$

- $x^T y > 0$ means $\angle(x, y)$ is acute
- $x^T y < 0$ means $\angle(x, y)$ is obtuse
Halfspaces

A halfspace with outward normal vector y, and boundary passing through 0

$$H = \{x \mid x^T y \leq 0\}$$
for any set $S \subset \mathbb{R}^n$, the **orthogonal complement** is

$$S^\perp = \{ x \mid x^T y = 0 \text{ for all } y \in S \}$$

- S^\perp is always a subspace
- S^\perp is the set of all vectors x, each of which is orthogonal to every vector in S
Orthonormal set of vectors

set of vectors \(\{ u_1, \ldots, u_k \} \subset \mathbb{R}^n \) is

- **normalized** if \(\| u_i \| = 1 \), \(i = 1, \ldots, k \)

 (\(u_i \) are called *unit vectors* or *direction vectors*)

- **orthogonal** if \(u_i \perp u_j \) for \(i \neq j \)

- **orthonormal** if both

slang: we say ‘\(u_1, \ldots, u_k \) are orthonormal vectors’ but orthonormality (like independence) is a property of a *set* of vectors, not vectors individually

in terms of \(U = [u_1 \cdots u_k] \), orthonormal means

\[
U^T U = I_k
\]
Orthonormality

an orthonormal set of vectors is independent

- to see this, multiply $Ux = 0$ by U^T
- hence $\{u_1, \ldots, u_k\}$ is an orthonormal basis for $\text{span}(u_1, \ldots, u_k) = \text{range}(U)$

- warning: if $k < n$ then $UU^T \neq I$ (since its rank is at most k)
 (more on this matrix later . . .)
Orthonormal basis for \mathbb{R}^n

A matrix U is called *orthogonal* if

$$U \text{ is square and } U^T U = I$$

- the set of columns u_1, \ldots, u_n is an orthonormal *basis* for \mathbb{R}^n
- (you’d think such matrices would be called *orthonormal*, not *orthogonal*)
- it follows that $U^{-1} = U^T$, and hence also $UU^T = I$, *i.e.*,
 $$\sum_{i=1}^{n} u_i u_i^T = I$$
Expansion in orthonormal basis

suppose U is orthogonal, so $x = UU^T x$, i.e.,

$$x = \sum_{i=1}^{n} (u_i^T x) u_i$$

- $u_i^T x$ is called the component of x in the direction u_i
- $a = U^T x$ resolves x into the vector of its u_i components
- $x = Ua$ reconstitutes x from its u_i components
- $x = Ua = \sum_{i=1}^{n} a_i u_i$ is called the (u_i-) expansion of x
Geometric interpretation

if U has orthonormal columns then transformation $w = Uz$

- preserves *norm* of vectors, i.e., $\|Uz\| = \|z\|$
- preserves *angles* between vectors, i.e., $\angle(Uz, U\tilde{z}) = \angle(z, \tilde{z})$
- we say U is *isometric*, it preserves distances
Example: Rotation

rotation by θ in \mathbb{R}^2 is given by

$$y = U_\theta x, \quad U_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

since $e_1 \mapsto (\cos \theta, \sin \theta), \ e_2 \mapsto (-\sin \theta, \cos \theta)$
Example: Reflection

reflection across line $x_2 = x_1 \tan(\theta/2)$ is given by

$$y = R_\theta x, \quad R_\theta = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

since $e_1 \rightarrow (\cos \theta, \sin \theta), \ e_2 \rightarrow (\sin \theta, -\cos \theta)$