Linear functions
Linear equations

consider system of linear equations

\[
y_1 = a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n
\]

\[
y_2 = a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n
\]

\[
\vdots
\]

\[
y_m = a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n
\]

can be written in matrix form as \(y = Ax \), where

\[
y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}, \quad A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}
\]
Linear functions

A function \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is *linear* if

- \(f(x + y) = f(x) + f(y) \), \(\forall x, y \in \mathbb{R}^n \)
- \(f(\alpha x) = \alpha f(x) \), \(\forall x \in \mathbb{R}^n \forall \alpha \in \mathbb{R} \)

i.e., *superposition* holds.

![Linear functions diagram](image)
Matrix multiplication function

- consider function $f : \mathbb{R}^n \to \mathbb{R}^m$ given by $f(x) = Ax$, where $A \in \mathbb{R}^{m \times n}$

- matrix multiplication function f is linear

- **converse** is true: any linear function $f : \mathbb{R}^n \to \mathbb{R}^m$ can be written as $f(x) = Ax$ for some $A \in \mathbb{R}^{m \times n}$

- representation via matrix multiplication is unique: for any linear function f there is only one matrix A for which $f(x) = Ax$ for all x

- $y = Ax$ is a concrete representation of a generic linear function
Interpretations of $y = Ax$

- y is measurement or observation; x is unknown to be determined
- x is ‘input’ or ‘action’; y is ‘output’ or ‘result’
- $y = Ax$ defines a function or transformation that maps $x \in \mathbb{R}^n$ into $y \in \mathbb{R}^m$
Interpretation of a_{ij}

\[y_i = \sum_{j=1}^{n} a_{ij} x_j \]

a_{ij} is \textit{gain factor} from jth input (x_j) to ith output (y_i)

- ith \textit{row} of A concerns ith \textit{output}
- jth \textit{column} of A concerns jth \textit{input}

$\text{a}_{27} = 0$ means 2nd output (y_2) doesn’t depend on 7th input (x_7)

$|a_{31}| \gg |a_{3j}|$ for $j \neq 1$ means y_3 depends mainly on x_1

$|a_{52}| \gg |a_{i2}|$ for $i \neq 5$ means x_2 affects mainly y_5

- A is lower triangular, \textit{i.e.,} $a_{ij} = 0$ for $i < j$, means y_i only depends on x_1, \ldots, x_i

- A is diagonal, \textit{i.e.,} $a_{ij} = 0$ for $i \neq j$, means ith output depends only on ith input

more generally, \textit{sparsity pattern} of A, \textit{i.e.,} list of zero/nonzero entries of A, shows which x_j affect which y_i
if \(f : \mathbb{R}^n \to \mathbb{R}^m \) is differentiable at \(x_0 \in \mathbb{R}^n \), then

\[
x \text{ near } x_0 \implies f(x) \text{ very near } f(x_0) + Df(x_0)(x - x_0)
\]

where

\[
Df(x_0)_{ij} = \frac{\partial f_i}{\partial x_j} \bigg|_{x_0}
\]

is derivative (Jacobian) matrix

with \(y = f(x) \), \(y_0 = f(x_0) \), define input deviation \(\delta x := x - x_0 \), output deviation \(\delta y := y - y_0 \)

then we have \(\delta y \approx Df(x_0)\delta x \)

when deviations are small, they are (approximately) related by a linear function