Linear functions
Linear equations

consider system of linear equations

\[y_1 = a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \]
\[y_2 = a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \]
\[\vdots \]
\[y_m = a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \]

can be written in matrix form as \(y = Ax \), where

\[
y = \begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_m
\end{bmatrix} \quad A = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix} \quad x = \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
\]
Linear functions

A function \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is linear if

1. \(f(x + y) = f(x) + f(y), \forall x, y \in \mathbb{R}^n \)
2. \(f(\alpha x) = \alpha f(x), \forall x \in \mathbb{R}^n \forall \alpha \in \mathbb{R} \)

I.e., superposition holds
Matrix multiplication function

- consider function \(f : \mathbb{R}^n \to \mathbb{R}^m \) given by \(f(x) = Ax \), where \(A \in \mathbb{R}^{m \times n} \)

- matrix multiplication function \(f \) is linear

- **converse** is true: any linear function \(f : \mathbb{R}^n \to \mathbb{R}^m \) can be written as \(f(x) = Ax \) for some \(A \in \mathbb{R}^{m \times n} \)

- representation via matrix multiplication is unique: for any linear function \(f \) there is only one matrix \(A \) for which \(f(x) = Ax \) for all \(x \)

- \(y = Ax \) is a concrete representation of a generic linear function
Interpretations of $y = Ax$

- y is measurement or observation; x is unknown to be determined
- x is ‘input’ or ‘action’; y is ‘output’ or ‘result’
- $y = Ax$ defines a function or transformation that maps $x \in \mathbb{R}^n$ into $y \in \mathbb{R}^m$
Interpretation of a_{ij}

$$y_i = \sum_{j=1}^{n} a_{ij} x_j$$

a_{ij} is gain factor from jth input (x_j) to ith output (y_i)

- ith row of A concerns ith output
- jth column of A concerns jth input
- $a_{27} = 0$ means 2nd output (y_2) doesn’t depend on 7th input (x_7)
- $|a_{31}| \gg |a_{3j}|$ for $j \neq 1$ means y_3 depends mainly on x_1
- $|a_{52}| \gg |a_{i2}|$ for $i \neq 5$ means x_2 affects mainly y_5
- A is lower triangular, *i.e.*, $a_{ij} = 0$ for $i < j$, means y_i only depends on x_1, \ldots, x_i
- A is diagonal, *i.e.*, $a_{ij} = 0$ for $i \neq j$, means ith output depends only on ith input

more generally, sparsity pattern of A, *i.e.*, list of zero/nonzero entries of A, shows which x_j affect which y_i