Interpreting Linear Equations
Broad categories of applications

linear model or function $y = Ax$

some broad categories of applications:

- estimation or inversion
- control or design
- mapping or transformation

(this list is not exclusive; can have combinations . . .)
Estimation or inversion

\[y = Ax \]

- \(y_i \) is \(i \)th measurement or sensor reading (which we know)
- \(x_j \) is \(j \)th parameter to be estimated or determined
- \(a_{ij} \) is sensitivity of \(i \)th sensor to \(j \)th parameter

sample problems:

- find \(x \), given \(y \)
- find all \(x \)'s that result in \(y \) (\(i.e., \) all \(x \)'s consistent with measurements)
- if there is no \(x \) such that \(y = Ax \), find \(x \) s.t. \(y \approx Ax \) (\(i.e., \) if the sensor readings are inconsistent, find \(x \) which is almost consistent)
Control or design

\[y = Ax \]

- \(x \) is vector of design parameters or inputs (which we can choose)
- \(y \) is vector of results, or outcomes
- \(A \) describes how input choices affect results

Sample problems:

- find \(x \) so that \(y = y_{\text{des}} \)
- find all \(x \)'s that result in \(y = y_{\text{des}} \) (i.e., find all designs that meet specifications)
- among \(x \)'s that satisfy \(y = y_{\text{des}} \), find a small one (i.e., find a small or efficient \(x \) that meets specifications)
Mapping or transformation

- x is mapped or transformed to y by linear function $y = Ax$

Sample problems:

- determine if there is an x that maps to a given y
- (if possible) find an x that maps to y
- find all x’s that map to a given y
- if there is only one x that maps to y, find it (i.e., decode or undo the mapping)
Matrix multiplication as mixture of columns

write $A \in \mathbb{R}^{m \times n}$ in terms of its columns

$$A = [a_1 \ a_2 \ \cdots \ a_n]$$

where $a_j \in \mathbb{R}^m$. Then then $y = Ax$ means

$$y = x_1a_1 + x_2a_2 + \cdots + x_na_n$$

(x_j's are scalars, a_j's are m-vectors)

- y is a (linear) combination or mixture of the columns of A
- coefficients of x give coefficients of mixture
- each column of A represents an *actuator*
Geometric interpretation of control

example: \(A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}, \quad x = \begin{bmatrix} 1 \\ -0.5 \end{bmatrix}, \quad y = \begin{bmatrix} 1.5 \\ 1.5 \end{bmatrix} \)

\(Ax = a_1 + (-0.5)a_2 = \begin{bmatrix} 1.5 \\ 1.5 \end{bmatrix} \)

another example:

\[a_j = A e_j \]

where \(e_j \) is the \(j \)th unit vector:

\[e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \ldots, \quad e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ n \end{bmatrix} \]

\(j \)th column of \(A \) gives response to unit \(j \)th input
Matrix multiplication as inner product with rows

write A in terms of its rows:

$$A = \begin{bmatrix} \tilde{a}_1^T \\ \tilde{a}_2^T \\ \vdots \\ \tilde{a}_m^T \end{bmatrix}$$

where $\tilde{a}_i \in \mathbb{R}^n$

then $y = Ax$ can be written as

$$y = \begin{bmatrix} \tilde{a}_1^T x \\ \tilde{a}_2^T x \\ \vdots \\ \tilde{a}_m^T x \end{bmatrix}$$

- $y_i = \tilde{a}_i^T x$, so that y_i is inner product of ith row of A with x
- each row of A represents a sensor
Geometric interpretation of estimation

\[b_i^T x = \text{constant} \]

is a (hyper-)plane in \(\mathbb{R}^n \) normal to \(b_i \).

If \(Ax = y \) then \(x \) is on intersection of hyperplanes \(b_i^T x = y_i \).

\[
A = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}
\]

\[
x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}
\]

\[
y = \begin{bmatrix} 4 \\ 1 \end{bmatrix}
\]
Block diagram representation

\(y = Ax \) can be represented by a *signal flow graph* or *block diagram* e.g. for \(m = n = 2 \), we represent

\[
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} =
\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

as

\[
\begin{array}{c}
x_1 \\
a_{21} \\
a_{12} \\
x_2
\end{array} \rightarrow \begin{array}{c}
a_{11} \rightarrow y_1 \\
a_{22} \rightarrow y_2
\end{array}
\]

- \(a_{ij} \) is the gain along the path from \(j \)th input to \(i \)th output

- (by not drawing paths with zero gain) shows sparsity structure of \(A \) (e.g., diagonal, block upper triangular, arrow . . .)
Example: block upper triangular matrices

\[A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \]

where \(A_{11} \in \mathbb{R}^{m_1 \times n_1}, A_{12} \in \mathbb{R}^{m_1 \times n_2}, A_{21} \in \mathbb{R}^{m_2 \times n_1}, A_{22} \in \mathbb{R}^{m_2 \times n_2} \)

partition \(x \) and \(y \) conformably, (so that \(x_1 \in \mathbb{R}^{n_1}, x_2 \in \mathbb{R}^{n_2} \ y_1 \in \mathbb{R}^{m_1}, y_2 \in \mathbb{R}^{m_2} \))

\[x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \]

then

\[y_1 = A_{11}x_1 + A_{12}x_2 \]
\[y_2 = A_{22}x_2, \]

...no path from \(x_1 \) to \(y_2 \), so \(y_2 \) doesn’t depend on \(x_1 \)
Matrix multiplication as composition

for \(A \in \mathbb{R}^{m \times n} \) and \(B \in \mathbb{R}^{n \times p} \), \(C = AB \in \mathbb{R}^{m \times p} \) where

\[
c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}
\]

composition interpretation

\(y = Cz \) represents composition of \(y = Ax \) and \(x = Bz \)

\[
\begin{align*}
z \rightarrow B \quad & \quad x \rightarrow A \quad \Rightarrow \quad y \\
\end{align*}
\]

\[
\begin{align*}
z \rightarrow AB \quad \equiv \quad z \rightarrow AB \quad \Rightarrow \quad y
\end{align*}
\]

(note that \(B \) is on left in block diagram)
Column and row interpretations

can write product $C = AB$ as

$$C = [c_1 \cdots c_p] = AB = [Ab_1 \cdots Ab_p]$$

i.e., ith column of C is A acting on ith column of B

similarly we can write

$$C = \begin{bmatrix} \tilde{c}_1^T \\ \vdots \\ \tilde{c}_m^T \end{bmatrix} = AB = \begin{bmatrix} \tilde{a}_1^T B \\ \vdots \\ \tilde{a}_m^T B \end{bmatrix}$$

i.e., ith row of C is ith row of A acting (on left) on B
Inner product interpretation

\[c_{ij} = \tilde{a}_i^T b_j = \langle \tilde{a}_i, b_j \rangle \]

i.e., entries of \(C \) are inner products of rows of \(A \) and columns of \(B \)

\[\text{Gram matrix of vectors } f_1, \ldots, f_n \text{ defined as } G_{ij} = f_i^T f_j \]

(gives inner product of each vector with the others)

\[G = [f_1 \ldots f_n]^T [f_1 \ldots f_n] \]
Matrix multiplication interpretation via paths

\[\begin{array}{ccc}
 & b_{11} & \\
b_{21} & & a_{11} \\
 b_{12} & & a_{12} \\
 b_{22} & & a_{22} \\
 x_1 & b_{21} & z_1 \\
 x_2 & b_{12} & z_2 \\
 & b_{22} & \\
 y_1 & a_{22} & y_2 \\
\end{array} \]

- \(a_{ik} b_{kj} \) is gain of path from input \(j \) to output \(i \) via \(k \)
- \(c_{ij} \) is sum of gains over all paths from input \(j \) to output \(i \)

Path gain: \(a_{22} b_{21} \)