Interpreting Linear Equations

Stephen Boyd and Sanjay Lall

EE263
Stanford University
Broad categories of applications

linear model or function $y = Ax$

some broad categories of applications:

- estimation or inversion
- control or design
- mapping or transformation

(this list is not exclusive; can have combinations . . .)
Estimation or inversion

\[y = Ax \]

- \(y_i \) is \(i \)th measurement or sensor reading (which we know)
- \(x_j \) is \(j \)th parameter to be estimated or determined
- \(a_{ij} \) is sensitivity of \(i \)th sensor to \(j \)th parameter

Sample problems:

- find \(x \), given \(y \)
- find all \(x \)'s that result in \(y \) (i.e., all \(x \)'s consistent with measurements)
- if there is no \(x \) such that \(y = Ax \), find \(x \) s.t. \(y \approx Ax \) (i.e., if the sensor readings are inconsistent, find \(x \) which is almost consistent)
Control or design

\[y = Ax \]

- \(x \) is vector of design parameters or inputs (which we can choose)
- \(y \) is vector of results, or outcomes
- \(A \) describes how input choices affect results

Sample problems:

- Find \(x \) so that \(y = y_{des} \)
- Find all \(x \)'s that result in \(y = y_{des} \) (i.e., find all designs that meet specifications)
- Among \(x \)'s that satisfy \(y = y_{des} \), find a small one (i.e., find a small or efficient \(x \) that meets specifications)
Mapping or transformation

- x is mapped or transformed to y by linear function $y = Ax$

Sample problems:

- Determine if there is an x that maps to a given y
- (If possible) Find an x that maps to y
- Find all x’s that map to a given y
- If there is only one x that maps to y, find it (i.e., decode or undo the mapping)
Matrix multiplication as mixture of columns

write $A \in \mathbb{R}^{m \times n}$ in terms of its columns

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

where $a_j \in \mathbb{R}^m$. Then then $y = Ax$ means

$$y = x_1a_1 + x_2a_2 + \cdots + x_na_n$$

(x_j's are scalars, a_j's are m-vectors)

- y is a (linear) combination or mixture of the columns of A
- coefficients of x give coefficients of mixture
- each column of A represents an actuator
Geometric interpretation of control

example: \(A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \), \(x = \begin{bmatrix} 1 \\ -0.5 \end{bmatrix} \), \(y = \begin{bmatrix} 1.5 \\ 1.5 \end{bmatrix} \)

\(Ax = a_1 + (-0.5)a_2 = \begin{bmatrix} 1.5 \\ 1.5 \end{bmatrix} \)

another example:

\[a_j = Ae_j \]

where \(e_j \) is the \(j \)th unit vector:

\[e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \ldots, \quad e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ n \end{bmatrix} \]

\(j \)th column of \(A \) gives response to unit \(j \)th input
Matrix multiplication as inner product with rows

write A in terms of its rows:

$$A = \begin{bmatrix}
\tilde{a}_1^T \\
\tilde{a}_2^T \\
\vdots \\
\tilde{a}_m^T
\end{bmatrix}$$

where $\tilde{a}_i \in \mathbb{R}^n$

then $y = Ax$ can be written as

$$y = \begin{bmatrix}
\tilde{a}_1^T x \\
\tilde{a}_2^T x \\
\vdots \\
\tilde{a}_m^T x
\end{bmatrix}$$

- $y_i = \tilde{a}_i^T x$, so that y_i is inner product of ith row of A with x

- each row of A represents a sensor
Geometric interpretation of estimation

$$a_i^T x = \text{constant}$$

is a (hyper-)plane in \mathbb{R}^n normal to a_i.

If $Ax = y$ then x is on intersection of hyperplanes $a_i^T x = y_i$

$$A = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$$

$$x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$y = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$
Block diagram representation

\(y = Ax \) can be represented by a **signal flow graph** or **block diagram** e.g. for \(m = n = 2 \), we represent

\[
\begin{bmatrix}
 y_1 \\
 y_2
\end{bmatrix} =
\begin{bmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
\]

as

\[x_1 \rightarrow a_{11} \rightarrow y_1 \]
\[x_1 \rightarrow a_{21} \rightarrow y_1 \]
\[x_2 \rightarrow a_{12} \rightarrow y_2 \]
\[x_2 \rightarrow a_{22} \rightarrow y_2 \]

- \(a_{ij} \) is the gain along the path from \(j \)th input to \(i \)th output

- (by not drawing paths with zero gain) shows sparsity structure of \(A \) (e.g., diagonal, block upper triangular, arrow \ldots)
Example: block upper triangular matrices

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
0 & A_{22}
\end{bmatrix}
\]

where \(A_{11} \in \mathbb{R}^{m_1 \times n_1} \), \(A_{12} \in \mathbb{R}^{m_1 \times n_2} \), \(A_{21} \in \mathbb{R}^{m_2 \times n_1} \), \(A_{22} \in \mathbb{R}^{m_2 \times n_2} \)

partition \(x \) and \(y \) conformably, (so that \(x_1 \in \mathbb{R}^{n_1}, x_2 \in \mathbb{R}^{n_2} \), \(y_1 \in \mathbb{R}^{m_1}, y_2 \in \mathbb{R}^{m_2} \))

\[
x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}
\]

then

\[
y_1 = A_{11}x_1 + A_{12}x_2
\]
\[
y_2 = A_{22}x_2,
\]

...no path from \(x_1 \) to \(y_2 \), so \(y_2 \) doesn't depend on \(x_1 \)
Matrix multiplication as composition

for \(A \in \mathbb{R}^{m \times n} \) and \(B \in \mathbb{R}^{n \times p} \), \(C = AB \in \mathbb{R}^{m \times p} \) where

\[
c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}
\]

composition interpretation

\(y = Cz \) represents composition of \(y = Ax \) and \(x = Bz \)

(note that \(B \) is on left in block diagram)
Column and row interpretations

can write product $C = AB$ as

$$C = \begin{bmatrix} c_1 & \cdots & c_p \end{bmatrix} = AB = \begin{bmatrix} Ab_1 & \cdots & Ab_p \end{bmatrix}$$

i.e., ith column of C is A acting on ith column of B

similarly we can write

$$C = \begin{bmatrix} \hat{c}_1^\top \\ \vdots \\ \hat{c}_m^\top \end{bmatrix} = AB = \begin{bmatrix} \hat{a}_1^\top B \\ \vdots \\ \hat{a}_m^\top B \end{bmatrix}$$

i.e., ith row of C is ith row of A acting (on left) on B
Inner product interpretation

\[c_{ij} = \tilde{a}_i^T b_j = \langle \tilde{a}_i, b_j \rangle \]

i.e., entries of \(C \) are inner products of rows of \(A \) and columns of \(B \)

- \(c_{ij} = 0 \) means \(i \)th row of \(A \) is orthogonal to \(j \)th column of \(B \)

- **Gram matrix** of vectors \(f_1, \ldots, f_n \) defined as \(G_{ij} = f_i^T f_j \)

 (gives inner product of each vector with the others)

- \(G = \left[\begin{array}{ccc} f_1 & \cdots & f_n \end{array} \right]^T \left[\begin{array}{ccc} f_1 & \cdots & f_n \end{array} \right] \)
Matrix multiplication interpretation via paths

\[
\begin{array}{c}
\text{path gain} = a_{22}b_{21}
\end{array}
\]

- \(a_{ik}b_{kj}\) is gain of path from input \(j\) to output \(i\) via \(k\)
- \(c_{ij}\) is sum of gains over all paths from input \(j\) to output \(i\)