Least-squares data fitting

Stephen Boyd and Sanjay Lall

EE263
Stanford University
Least-squares data fitting

we are given:

- functions \(f_1, \ldots, f_n : S \rightarrow \mathbb{R} \), called *regressors* or *basis functions*

- data or measurements \((s_i, g_i), i = 1, \ldots, m\), where \(s_i \in S \) and (usually) \(m \gg n \)

problem: find coefficients \(x_1, \ldots, x_n \in \mathbb{R} \) so that

\[
x_1 f_1(s_i) + \cdots + x_n f_n(s_i) \approx g_i, \quad i = 1, \ldots, m
\]

i.e., find linear combination of functions that fits data

least-squares fit: choose \(x \) to minimize total square fitting error:

\[
\sum_{i=1}^{m} (x_1 f_1(s_i) + \cdots + x_n f_n(s_i) - g_i)^2
\]
Least-squares data fitting

- total square fitting error is $||Ax - g||^2$, where $A_{ij} = f_j(s_i)$
- hence, least-squares fit is given by
 \[x = (A^T A)^{-1} A^T g \]
 (assuming A is skinny, full rank)
- corresponding function is
 \[f_{\text{lsfit}}(s) = x_1 f_1(s) + \cdots + x_n f_n(s) \]
- applications:
 - interpolation, extrapolation, smoothing of data
 - developing simple, approximate model of data
Least-squares polynomial fitting

Problem: fit polynomial of degree \(< n \),

\[
p(t) = a_0 + a_1 t + \cdots + a_{n-1} t^{n-1},
\]
to data \((t_i, y_i), i = 1, \ldots, m\)

- basis functions are \(f_j(t) = t^{j-1}, j = 1, \ldots, n \)
- matrix \(A \) has form \(A_{ij} = t_i^{j-1} \)

\[
A = \begin{bmatrix}
1 & t_1 & t_1^2 & \cdots & t_1^{n-1} \\
1 & t_2 & t_2^2 & \cdots & t_2^{n-1} \\
& \vdots & \ddots & \vdots \\
1 & t_m & t_m^2 & \cdots & t_m^{n-1}
\end{bmatrix}
\]

(called a **Vandermonde matrix**)

Vandermonde matrices

assuming \(t_k \neq t_l \) for \(k \neq l \) and \(m \geq n \), \(A \) is full rank:

- suppose \(Aa = 0 \)
- corresponding polynomial \(p(t) = a_0 + \cdots + a_{n-1}t^{n-1} \) vanishes at \(m \) points \(t_1, \ldots, t_m \)
- by fundamental theorem of algebra \(p \) can have no more than \(n - 1 \) zeros, so \(p \) is identically zero, and \(a = 0 \)
- columns of \(A \) are independent, \(i.e., A \) full rank
Example

- fit $g(t) = 4t/(1 + 10t^2)$ with polynomial
- $m = 100$ points between $t = 0$ & $t = 1$
- fits for degrees 1, 2, 3, 4 have RMS errors 0.135, 0.076, 0.025, 0.005, respectively
Growing sets of regressors

consider \textit{family} of least-squares problems

\[
\text{minimize } \left\| \sum_{i=1}^{p} x_i a_i - y \right\|
\]

for \(p = 1, \ldots, n \)

\((a_1, \ldots, a_p \text{ are called } \textit{regressors})\)

- approximate \(y \) by linear combination of \(a_1, \ldots, a_p \)
- project \(y \) onto \(\text{span}\{a_1, \ldots, a_p\} \)
- regress \(y \) on \(a_1, \ldots, a_p \)
- as \(p \) increases, get better fit, so optimal residual decreases
Norm of optimal residual versus p

plot of optimal residual versus p shows how well y can be matched by linear combination of a_1, \ldots, a_p, as function of p.

$$
\min_{x_1} \| x_1 a_1 - y \|
$$

$$
\min_{x_1, \ldots, x_7} \| \sum_{i=1}^{7} x_i a_i - y \|
$$
Least-squares system identification

we measure input $u(t)$ and output $y(t)$ for $t = 0, \ldots, N$ of unknown system

$$
\begin{align*}
\begin{array}{ccc}
\text{u(t)} & \rightarrow & \text{unknown system} \\
& \rightarrow & \text{y(t)} \\
\end{array}
\end{align*}
$$

system identification problem: find reasonable model for system based on measured I/O data u, y

example with scalar u, y (vector u, y readily handled): fit I/O data with moving-average (MA) model with n delays

$$
\hat{y}(t) = h_0 u(t) + h_1 u(t - 1) + \cdots + h_n u(t - n)
$$

where $h_0, \ldots, h_n \in \mathbb{R}$
System identification

we can write model or predicted output as

\[
\begin{bmatrix}
\hat{y}(n) \\
\hat{y}(n+1) \\
\vdots \\
\hat{y}(N)
\end{bmatrix} =
\begin{bmatrix}
u(n) & u(n-1) & \cdots & u(0) \\
u(n+1) & u(n) & \cdots & u(1) \\
\vdots & \vdots & \ddots & \vdots \\
u(N) & u(N-1) & \cdots & u(N-n)
\end{bmatrix}
\begin{bmatrix}
h_0 \\
h_1 \\
\vdots \\
h_n
\end{bmatrix}
\]

model prediction error is

\[e = (y(n) - \hat{y}(n), \ldots, y(N) - \hat{y}(N)) \]

least-squares identification: choose model (i.e., \(h \)) that minimizes norm of model prediction error \(\|e\| \)

\[
\begin{align*}
\text{...a least-squares problem (with variables } h)\end{align*}
\]
Example

data used to fit model
Example

for \(n = 7 \) we obtain MA model with

\[
(h_0, \ldots, h_7) = (0.024, 0.282, 0.418, 0.354, 0.243, 0.487, 0.208, 0.441)
\]

with relative prediction error \(\|e\|/\|y\| = 0.37 \)

\(y(t) \) actual output, \(\hat{y}(t) \) predicted from model
Model order selection

question: how large should \(n \) be?

- obviously the larger \(n \), the smaller the prediction error *on the data used to form the model*
- suggests using largest possible model order for smallest prediction error
Model order selection

difficulty: for n too large the predictive ability of the model on other I/O data (from the same system) becomes worse
Out of sample validation

- evaluate model predictive performance on another I/O data set not used to develop model model validation data set
- check prediction error of models (developed using modeling data) on validation data
- plot suggests $n = 10$ is a good choice
for \(n = 50 \) the actual and predicted outputs on system identification and model validation data are:

- \(y(t) \) actual output, \(\hat{y}(t) \) predicted from model
- loss of predictive ability when \(n \) too large called \textit{model overfit} or \textit{overmodeling}