Solution via Laplace transform and matrix exponential

- Laplace transform
- solving $\dot{x} = Ax$ via Laplace transform
- state transition matrix
- matrix exponential
- qualitative behavior and stability
suppose $z : \mathbb{R}_+ \rightarrow \mathbb{R}^{p \times q}$

Laplace transform: $Z = \mathcal{L}(z)$, where $Z : D \subseteq \mathbb{C} \rightarrow \mathbb{C}^{p \times q}$ is defined by

$$Z(s) = \int_{0}^{\infty} e^{-st} z(t) \, dt$$

- integral of matrix is done term-by-term
- convention: upper case denotes Laplace transform
- D is the *domain* or *region of convergence* of Z
- D includes at least $\{s \mid \Re{s} > a\}$, where a satisfies $|z_{ij}(t)| \leq \alpha e^{at}$ for $t \geq 0$, $i = 1, \ldots, p$, $j = 1, \ldots, q$
Derivative property

\[\mathcal{L}(\dot{z}) = sZ(s) - z(0) \]

To derive, integrate by parts:

\[
\mathcal{L}(\dot{z})(s) = \int_0^\infty e^{-st} \dot{z}(t) \, dt \\
= e^{-st} z(t) \bigg|_{t=0}^{t=\infty} + s \int_0^\infty e^{-st} z(t) \, dt \\
= sZ(s) - z(0)
\]
Laplace transform solution of $\dot{x} = Ax$

Consider continuous-time time-invariant (TI) LDS

$$\dot{x} = Ax$$

for $t \geq 0$, where $x(t) \in \mathbb{R}^n$

- Take Laplace transform: $sX(s) - x(0) = AX(s)$
- Rewrite as $(sI - A)X(s) = x(0)$
- Hence $X(s) = (sI - A)^{-1}x(0)$
- Take inverse transform

$$x(t) = \mathcal{L}^{-1} \left((sI - A)^{-1} \right) x(0)$$
Resolvent and state transition matrix

- \((sI - A)^{-1}\) is called the *resolvent* of \(A\)

- Resolvent defined for \(s \in \mathbb{C}\) except eigenvalues of \(A\), i.e., \(s\) such that \(\det(sI - A) = 0\)

- \(\Phi(t) = \mathcal{L}^{-1} ((sI - A)^{-1})\) is called the *state-transition matrix*; it maps the initial state to the state at time \(t\):

 \[
x(t) = \Phi(t)x(0)
 \]

 (in particular, state \(x(t)\) is a linear function of initial state \(x(0)\))
Example 1: Harmonic oscillator

\[\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} x \]
Example 1: Harmonic oscillator

\[sI - A = \begin{bmatrix} s & -1 \\ 1 & s \end{bmatrix}, \text{ so resolvent is} \]

\[(sI - A)^{-1} = \begin{bmatrix} \frac{s}{s^2+1} & \frac{1}{s^2+1} \\ -1 & \frac{s}{s^2+1} \end{bmatrix} \]

(eigenvalues are \(\pm i \))

state transition matrix is

\[\Phi(t) = \mathcal{L}^{-1} \left(\begin{bmatrix} \frac{s}{s^2+1} & \frac{1}{s^2+1} \\ -1 & \frac{s}{s^2+1} \end{bmatrix} \right) = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix} \]

a rotation matrix (\(-t\) radians)

so we have \(x(t) = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix} x(0) \)
Example 2: Double integrator

\[
\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x
\]
Example 2: Double integrator

\[sI - A = \begin{bmatrix} s & -1 \\ 0 & s \end{bmatrix}, \text{ so resolvent is} \]

\[(sI - A)^{-1} = \begin{bmatrix} \frac{1}{s} & \frac{1}{s^2} \\ 0 & \frac{1}{s} \end{bmatrix} \]

(eigenvalues are 0, 0)

state transition matrix is

\[\Phi(t) = \mathcal{L}^{-1} \left(\begin{bmatrix} \frac{1}{s} & \frac{1}{s^2} \\ 0 & \frac{1}{s} \end{bmatrix} \right) = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \]

so we have \[x(t) = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} x(0) \]
Characteristic polynomial

\[\chi(s) = \det(sI - A) \] is called the \textit{characteristic polynomial} of \(A \)

\begin{itemize}
 \item \(\chi(s) \) is a polynomial of degree \(n \), with leading (\textit{i.e.}, \(s^n \)) coefficient one
 \item roots of \(\chi \) are the eigenvalues of \(A \)
 \item \(\chi \) has real coefficients, so eigenvalues are either real or occur in conjugate pairs
 \item there are \(n \) eigenvalues (if we count multiplicity as roots of \(\chi \))
\end{itemize}
Eigenvalues of A and poles of resolvent

i, j entry of resolvent can be expressed via Cramer’s rule as

$$(-1)^{i+j} \frac{\det \Delta_{ij}}{\det(sI - A)}$$

where Δ_{ij} is $sI - A$ with jth row and ith column deleted

- $\det \Delta_{ij}$ is a polynomial of degree less than n, so i, j entry of resolvent has form $f_{ij}(s)/\chi(s)$ where f_{ij} is polynomial with degree less than n

- poles of entries of resolvent must be eigenvalues of A

- but not all eigenvalues of A show up as poles of each entry (when there are cancellations between $\det \Delta_{ij}$ and $\chi(s)$)
Matrix exponential

Define \textbf{matrix exponential} as

\[e^M = I + M + \frac{M^2}{2!} + \cdots \]

- converges for all \(M \in \mathbb{R}^{n \times n} \)
- looks like ordinary power series

\[e^{at} = 1 + ta + \frac{(ta)^2}{2!} + \cdots \]

with square matrices instead of scalars \ldots
Matrix exponential

\[(I - C)^{-1} = I + C + C^2 + C^3 + \cdots \text{ (if series converges)}\]

- series expansion of resolvent:

\[(sI - A)^{-1} = (1/s)(I - A/s)^{-1} = \frac{I}{s} + \frac{A}{s^2} + \frac{A^2}{s^3} + \cdots\]

(valid for \(|s|\) large enough) so

\[\Phi(t) = \mathcal{L}^{-1} \left((sI - A)^{-1}\right) = I + tA + \frac{(tA)^2}{2!} + \cdots\]

- with this definition, state-transition matrix is

\[\Phi(t) = \mathcal{L}^{-1} \left((sI - A)^{-1}\right) = e^{tA}\]
solution of $\dot{x} = Ax$, with $A \in \mathbb{R}^{n \times n}$ and constant, is

$$x(t) = e^{tA}x(0)$$

generalizes scalar case: solution of $\dot{x} = ax$, with $a \in \mathbb{R}$ and constant, is

$$x(t) = e^{ta}x(0)$$
Properties of matrix exponential

- matrix exponential is *meant* to look like scalar exponential
- some things you’d guess hold for the matrix exponential (by analogy with the scalar exponential) do in fact hold
- but many things you’d guess are wrong

example: you might guess that $e^{A+B} = e^A e^B$, but it’s false (in general)

\[
A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}
\]

\[
e^A = \begin{bmatrix} 0.54 & 0.84 \\ -0.84 & 0.54 \end{bmatrix}, \quad e^B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}
\]

\[
e^{A+B} = \begin{bmatrix} 0.16 & 1.40 \\ -0.70 & 0.16 \end{bmatrix} \neq e^A e^B = \begin{bmatrix} 0.54 & 1.38 \\ -0.84 & -0.30 \end{bmatrix}
\]
Properties of matrix exponential

\[e^{A+B} = e^A e^B \text{ if } AB = BA \]

i.e., product rule holds when \(A \) and \(B \) commute

thus for \(t, \ s \in \mathbb{R} \), \(e^{(tA+sA)} = e^{tA} e^{sA} \)

with \(s = -t \) we get

\[e^{tA} e^{-tA} = e^{tA-tA} = e^0 = I \]

so \(e^{tA} \) is nonsingular, with inverse

\[(e^{tA})^{-1} = e^{-tA} \]
Example: matrix exponential

let’s find e^A, where $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

we already found

$$e^{tA} = \mathcal{L}^{-1}(sI - A)^{-1} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$$

so, plugging in $t = 1$, we get $e^A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

let’s check power series:

$$e^A = I + A + \frac{A^2}{2!} + \cdots = I + A$$

since $A^2 = A^3 = \cdots = 0$
Time transfer property

for \(\dot{x} = Ax \) we know

\[
x(t) = \Phi(t)x(0) = e^{tA}x(0)
\]

interpretation: the matrix \(e^{tA} \) propagates initial condition into state at time \(t \)

more generally we have, for *any* \(t \) and \(\tau \),

\[
x(\tau + t) = e^{tA}x(\tau)
\]

(to see this, apply result above to \(z(t) = x(t + \tau) \))

interpretation: the matrix \(e^{tA} \) propagates state \(t \) seconds forward in time (backward if \(t < 0 \))
Time transfer property

- recall first order (forward Euler) approximate state update, for small t:

\[x(\tau + t) \approx x(\tau) + t\dot{x}(\tau) = (I + tA)x(\tau) \]

- exact solution is

\[x(\tau + t) = e^{tA}x(\tau) = (I + tA + (tA)^2/2! + \cdots)x(\tau) \]

- forward Euler is just first two terms in series
Sampling a continuous-time system

Suppose \(\dot{x} = Ax \)

Sample \(x \) at times \(t_1 \leq t_2 \leq \cdots \): define \(z(k) = x(t_k) \)

Then \(z(k+1) = e^{(t_{k+1} - t_k)A} z(k) \)

For uniform sampling \(t_{k+1} - t_k = h \), so

\[
z(k+1) = e^{hA} z(k),
\]

A discrete-time LDS (called discretized version of continuous-time system)
Piecewise constant system

consider time-varying LDS $\dot{x} = A(t)x$, with

$$A(t) = \begin{cases} A_0 & 0 \leq t < t_1 \\ A_1 & t_1 \leq t < t_2 \\ \vdots \\ \end{cases}$$

where $0 < t_1 < t_2 < \cdots$ (sometimes called jump linear system)

for $t \in [t_i, t_{i+1}]$ we have

$$x(t) = e^{(t-t_i)A_i} \cdots e^{(t_3-t_2)A_2} e^{(t_2-t_1)A_1} e^{t_1A_0} x(0)$$

(matrix on righthand side is called state transition matrix for system, and denoted $\Phi(t)$)
Qualitative behavior of $x(t)$

suppose $\dot{x} = Ax$, $x(t) \in \mathbb{R}^n$
then $x(t) = e^{tA}x(0)$; $X(s) = (sI - A)^{-1}x(0)$
i$\text{th component } X_i(s) \text{ has form}$

$$X_i(s) = \frac{a_i(s)}{\lambda'(s)}$$

where a_i is a polynomial of degree $< n$
thus the poles of X_i are all eigenvalues of A (but not necessarily the other way around)
Qualitative behavior of $x(t)$

first assume eigenvalues λ_i are distinct, so $X_i(s)$ cannot have repeated poles
then $x_i(t)$ has form

$$x_i(t) = \sum_{j=1}^{n} \beta_{ij} e^{\lambda_j t}$$

where β_{ij} depend on $x(0)$ (linearly)
eigenvalues determine (possible) qualitative behavior of x:

- eigenvalues give exponents that can occur in exponentials
- real eigenvalue λ corresponds to an exponentially decaying or growing term $e^{\lambda t}$ in solution
- complex eigenvalue $\lambda = \sigma + i\omega$ corresponds to decaying or growing sinusoidal term $e^{\sigma t} \cos(\omega t + \phi)$ in solution
Qualitative behavior of $x(t)$

- $\Re \lambda_j$ gives exponential growth rate (if >0), or exponential decay rate (if <0) of term

- $\Im \lambda_j$ gives frequency of oscillatory term (if $\neq 0$)
Repeated eigenvalues

now suppose \(A \) has repeated eigenvalues, so \(X_i \) can have repeated poles

express eigenvalues as \(\lambda_1, \ldots, \lambda_r \) (distinct) with multiplicities \(n_1, \ldots, n_r \), respectively \((n_1 + \cdots + n_r = n) \)

then \(x_i(t) \) has form

\[
x_i(t) = \sum_{j=1}^{r} p_{ij}(t)e^{\lambda_j t}
\]

where \(p_{ij}(t) \) is a polynomial of degree \(< n_j \) (that depends linearly on \(x(0) \))
Stability

we say system $\dot{x} = Ax$ is stable if $e^{tA} \to 0$ as $t \to \infty$

meaning:

- state $x(t)$ converges to 0, as $t \to \infty$, no matter what $x(0)$ is
- all trajectories of $\dot{x} = Ax$ converge to 0 as $t \to \infty$

fact: $\dot{x} = Ax$ is stable if and only if all eigenvalues of A have negative real part:

$$\Re \lambda_i < 0, \quad i = 1, \ldots, n$$
the ‘if’ part is clear since

$$\lim_{t \to \infty} p(t)e^{\lambda t} = 0$$

for any polynomial, if $\Re \lambda < 0$

we’ll see the ‘only if’ part next lecture

more generally, $\max_i \Re \lambda_i$ determines the maximum asymptotic logarithmic growth rate of $x(t)$ (or decay, if < 0)