Engineering examples
Linear elastic structure

- x_j is external force applied at some node, in some fixed direction
- y_i is (small) deflection of some node, in some fixed direction

(provided x, y are small) we have $y \approx Ax$

- A is called the **compliance matrix**
- a_{ij} gives deflection i per unit force at j (in m/N)
Total force/torque on rigid body

- x_j is external force/torque applied at some point/direction/axis
- $y \in \mathbb{R}^6$ is resulting total force & torque on body
 (y_1, y_2, y_3 are x-, y-, z- components of total force,
 y_4, y_5, y_6 are x-, y-, z- components of total torque)
- we have $y = Ax$
- A depends on geometry
 (of applied forces and torques with respect to center of gravity CG)
- jth column gives resulting force & torque for unit force/torque j
Linear static circuit

interconnection of resistors, linear dependent (controlled) sources, and independent sources

\mathbf{x}_j is value of independent source j

y_i is some circuit variable (voltage, current)

we have $y = Ax$

if x_j are currents and y_i are voltages, A is called the \textit{impedance} or \textit{resistance} matrix
Final position/velocity of mass due to applied forces

- unit mass, zero position/velocity at $t = 0$, subject to force $f(t)$ for $0 \leq t \leq n$

- $f(t) = x_j$ for $j - 1 \leq t < j$, $j = 1, \ldots, n$
 (x is the sequence of applied forces, constant in each interval)

- y_1, y_2 are final position and velocity (i.e., at $t = n$)

- we have $y = Ax$

- a_{1j} gives influence of applied force during $j - 1 \leq t < j$ on final position

- a_{2j} gives influence of applied force during $j - 1 \leq t < j$ on final velocity
Gravimeter prospecting

\[x_j = \rho_j - \rho_{avg} \] is (excess) mass density of earth in voxel \(j \);

\(y_i \) is measured gravity anomaly at location \(i \), i.e., some component (typically vertical) of \(g_i - g_{avg} \)

\(y = Ax \), where \(A \) comes from physics and geometry

\(j \)th column of \(A \) shows sensor readings caused by unit density anomaly at voxel \(j \)

\(i \)th row of \(A \) shows sensitivity pattern of sensor \(i \)
Thermal system

- x_j is power of jth heating element or heat source
- y_i is change in steady-state temperature at location i
- thermal transport via conduction
- $y = Ax$
- a_{ij} gives influence of heater j at location i (in °C/W)
- jth column of A gives pattern of steady-state temperature rise due to 1W at heater j
- ith row shows how heaters affect location i
Illumination with multiple lamps

- n lamps illuminating m (small, flat) patches, no shadows
- x_j is power of jth lamp; y_i is illumination level of patch i
- $y = Ax$, where $a_{ij} = r_{ij}^{-2} \max\{\cos \theta_{ij}, 0\}$
 - $(\cos \theta_{ij} < 0$ means patch i is shaded from lamp j)
- jth column of A shows illumination pattern from lamp j
Signal and interference power in wireless system

- \(n \) transmitter/receiver pairs
- Transmitter \(j \) transmits to receiver \(j \) (and, inadvertently, to the other receivers)
- \(p_j \) is power of \(j \)th transmitter
- \(s_i \) is received signal power of \(i \)th receiver
- \(z_i \) is received interference power of \(i \)th receiver
- \(G_{ij} \) is path gain from transmitter \(j \) to receiver \(i \)
- We have \(s = Ap, z = Bp \), where
 \[
 a_{ij} = \begin{cases}
 G_{ii} & i = j \\
 0 & i \neq j
 \end{cases} \quad b_{ij} = \begin{cases}
 0 & i = j \\
 G_{ij} & i \neq j
 \end{cases}
 \]
- \(A \) is diagonal; \(B \) has zero diagonal (ideally, \(A \) is ‘large’, \(B \) is ‘small’).
Cost of production

production inputs (materials, parts, labor, ...) are combined to make a number of products

- x_j is price per unit of production input j
- a_{ij} is units of production input j required to manufacture one unit of product i
- y_i is production cost per unit of product i
- We have $y = Ax$
- ith row of A is bill of materials for unit of product i
Cost of production

Production inputs needed

- q_i is quantity of product i to be produced
- r_j is total quantity of production input j needed
- we have $r = A^T q$

Total production cost is

$$r^T x = (A^T q)^T x = q^T A x$$
Network traffic and flows

- n flows with rates f_1, \ldots, f_n pass from their source nodes to their destination nodes over fixed routes in a network.

- t_i, traffic on link i, is sum of rates of flows passing through it.

- Flow routes given by flow-link incidence matrix A_{ij}:

 $A_{ij} = \begin{cases}
 1 & \text{flow } j \text{ goes over link } i \\
 0 & \text{otherwise}
 \end{cases}$

- Traffic and flow rates related by $t = Af$.

Network traffic and flows

link delays and flow latency

- let d_1, \ldots, d_m be link delays, and l_1, \ldots, l_n be latency (total travel time) of flows
- $l = A^T d$
- $f^T l = f^T A^T d = (Af)^T d = t^T d$, total # of packets in network
Navigation by range measurement

- (x, y) unknown coordinates in plane
- (p_i, q_i) known coordinates of beacons for $i = 1, 2, 3, 4$
- ρ_i measured (known) distance or range from beacon i
Navigation by range measurement

- $\rho \in \mathbb{R}^4$ is a nonlinear function of $(x, y) \in \mathbb{R}^2$

$$\rho_i(x, y) = \sqrt{(x - p_i)^2 + (y - q_i)^2}$$

- Linearize around (x_0, y_0): $\delta \rho \approx A \begin{bmatrix} \delta x \\ \delta y \end{bmatrix}$, where

$$a_{i1} = \frac{(x_0 - p_i)}{\sqrt{(x_0 - p_i)^2 + (y_0 - q_i)^2}}, \quad a_{i2} = \frac{(y_0 - q_i)}{\sqrt{(x_0 - p_i)^2 + (y_0 - q_i)^2}}$$

- ith row of A shows (approximate) change in ith range measurement for (small) shift in (x, y) from (x_0, y_0)

- First column of A shows sensitivity of range measurements to (small) change in x from x_0

- Obvious application: (x_0, y_0) is last navigation fix; (x, y) is current position, a short time later