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Dynamic interpretation of eigenvectors

» invariant sets

» complex eigenvectors & invariant planes
» left eigenvectors

» modal form

» discrete-time stability



Dynamic interpretation

suppose Av = Av, v #0
if £ = Az and z(0) = v, then z(t) = v

several ways to see this, e.g.,
z(t) = e = (I +tA+

= v+ Atv +

At
=€e v

(since (tA)*v = (At)*v)

(tA)°

2!
(Ae)?

2 Y




Dynamic interpretation

» for X € C, solution is complex (we'll interpret later); for now, assume XA € R
» if initial state is an eigenvector v, resulting motion is very simple — always on the line spanned by v

At

» solution z(t) = e*wv is called mode of system & = Az (associated with eigenvalue )

» for A € R, A < 0, mode contracts or shrinks as ¢t

» for A € R, A > 0, mode expands or grows as t T



Invariant sets

a set S C R™ is invariant under £ = Az if whenever z(t) € S, then z(7) € S forall 7 > ¢

i.e.. once trajectory enters S, it stays in S

trajectory

vector field interpretation: trajectories only cut into S, never out



Invariant sets

suppose Av = Av, v #0, AER

» line { tv |t € R } is invariant
(in fact, ray { tv | ¢ > 0 } is invariant)

» if A <0, linesegment { tv |0 <t <a } isinvariant



Complex eigenvectors

suppose Av = Av, v # 0, X is complex
for a € C, (complex) trajectory ae**v satisfies ¢ = Az

hence so does (real) trajectory

z(t) =R (ae”v)
— ot [ v v ] coswt sinwt a
a Ul _sinwt  coswt —B

U = Ure + Wim, A=0+ww, a=a-+10

where

» trajectory stays in invariant plane span{ve, Vim }
» o gives logarithmic growth/decay factor

» w gives angular velocity of rotation in plane



Dynamic interpretation: left eigenvectors

suppose w'A = Aw', w #0

then p
a(wTa:) —w'z=w'Az = Aw'z)
i.e., w' ¢ satisfies the DE d(w'z)/dt = AM(w'z)

hence w'z(t) = e*w"z(0)
b even if trajectory z is complicated, w'z is simple
» if e.g, AER, A <0, halfspace { z | w"z < a } is invariant (for a > 0)
p for \=0 4w € C, (Rw)"z and (Sw) "z both have form

" (a cos(wt) + Bsin(wt))



Summary

» right eigenvectors are initial conditions from which resulting motion is simple (.e., remains on line or in
plane)

» left eigenvectors give linear functions of state that are simple, for any initial condition



Example

-1 —-10 -10
T = 1 0 0 T
0 1 0

block diagram:

T1

T2

eigenvalues are —1, +14/10

T3



Example

trajectory with z(0) = (0, —
2

1,1

bl

):

0.5

25

3.5

4.5

0.5

25

3.5

45
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Example

left eigenvector associated with eigenvalue —1 is
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Example

eigenvector associated with eigenvalue 24/10 is

|' —0.554 + io.771'|
v= 0.244+40.175
[ 0.055 — 40.077 J

so an invariant plane is spanned by

—0.554 0.771
Ure = | 0.244 |, vim = | 0.175
0.055 —0.077
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Example

for example, with z(0) = vze we have
1

0 0.5 1 15 2 25 3 3.5 4 4.5 5




Example: Markov chain

probability distribution satisfies p(t + 1) = Pp(t)
pi(t) =Prob( z(t) =% )so Y.,  pi(t)=1

P; = Prob( z(t+ 1) =1 | z(t) =7 ), o) Z?:l P;=1
(such matrices are called stochastic)

rewrite as:
[11---1]P=[11--- 1]

t.e., [11 --- 1] is a left eigenvector of P with e.v. 1

hence det(] — P) = 0, so there is a right eigenvector v # 0 with Pv = v

it can be shown that v can be chosen so that v; > 0, hence we can normalize v so that )7 v; =1
interpretation: v is an equilibrium distribution; i.e., if p(0) = v then p(¢) = v for all ¢ > 0

(if v is unique it is called the steady-state distribution of the Markov chain)
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Modal form

suppose A is diagonalizable by T

define new coordinates by z = T'Z, so

T# = AT%

&
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Modal form

in new coordinate system, system is diagonal (decoupled):

/ £

trajectories consist of n independent modes, i.e.,
fz(t) = ekitfti(O)

hence the name modal form

16



Real modal form

when eigenvalues (hence T') are complex, system can be put in real modal form:

ST'AS = diag (Ay, Myy1, Myris,. .., My 1)

where A, = diag(A1,...,Ar) are the real eigenvalues, and
M]-:{Uj wj:|, Aj=0j+w;, j=r+1Lr+3,...,n
—wj  0j

where A; are the complex eigenvalues (one from each conjugate pair)

17



Real modal form

block diagram of ‘complex mode':

—
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Diagonalization

diagonalization simplifies many matrix expressions
powers (i.e., discrete-time solution):
A* = (TaT )"
= (TAT™") - (TAT™Y)
=TA'T?
= T diag(\¥,... AT !

(for k < 0 only if A invertible, i.e., all A\; #0)
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Diagonalization

exponential (i.e., continuous-time solution):

e =T+ A+ A%+

= I+ TAT ™' + (TATY)? j20 4 -

=T(I+A+A/20+...)T"
=TT !
= T diag(e™,...,e*) T "
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Analytic function of a matrix

for any analytic function f : R — R, i.e., given by power series
f(a) = Bo + Pra + Paa” + faa’ + -
we can define f(A) for A € R™*™ (i.e., overload f) as

F(A) = Bol + PrA+ B2 A® + Bz A® + - ..

substituting A = TAT !, we have
F(A) = Bol + 1A+ P2 A’ + A + - -
= BoTT ' + BiTAT ' + Bo(TAT *)* + -
=T (Bol + prA+ oA’ +--- )T "
= leag(f()‘l)7 B f(An))T_l
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Solution via diagonalization

assume A is diagonalizable
consider LDS & = Az, with T"AT = A

then
z(t) = e"*z(0)
= Te™T™'2(0)

= Z et (w] z(0))v;

thus: any trajectory can be expressed as linear combination of modes
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Interpretation

» (left eigenvectors) decompose initial state z(0) into modal components w
» it term propagates ith mode forward ¢ seconds

» reconstruct state as linear combination of (right) eigenvectors

T
i T

(0)
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Qualitative behavior of z(t)

» eigenvalues give exponents that can occur in exponentials

At

» real eigenvalue A corresponds to an exponentially decaying or growing term e”" in solution

» complex eigenvalue A = o + 4w corresponds to decaying or growing sinusoidal term e’ cos(wt + ¢) in
solution

24



Qualitative behavior of z(t)

» R); gives exponential growth rate (if > 0), or exponential decay rate (if < 0) of term

» S); gives frequency of oscillatory term (if # 0)

eigenvalues Ss
$ X
X
Rs
X
X




Application

for what z(0) do we have z(t) — 0 as t — o0?

divide eigenvalues into those with negative real parts

and the others,

from

condition for z(t) — 0 is:

or equivalently,

(can you prove this?)

RA1 <0,...,RA: <0,

RAerr > 0,..., 8\, >0

z(t) = Z e (w] z(0))vs

=1

z(0) € span{vy,...,vs},

w;z(0)=0, i=s+1,...,n
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Stability of discrete-time systems

suppose A diagonalizable
consider discrete-time LDS z(t + 1) = Az(t)
if A=TAT™", then A* = TA*T™!
then .
z(t) = A'z(0) = Z M(w{z(0))v; = 0 ast— oo

=1

for all z(0) if and only if
il <1, 1=1,...,n.

we will see later that this is true even when A is not diagonalizable, so we have

fact: z(t + 1) = Az(t) is stable if and only if all eigenvalues of A have magnitude less than one
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