Dynamic interpretation of eigenvectors

- invariant sets
- ▶ complex eigenvectors & invariant planes
- left eigenvectors
- modal form
- discrete-time stability

Dynamic interpretation

suppose $Av=\lambda v,\ v\neq 0$ if $\dot x=Ax$ and x(0)=v, then $x(t)=e^{\lambda t}v$ several ways to see this, e.g.,

$$x(t) = e^{tA}v = \left(I + tA + \frac{(tA)^2}{2!} + \cdots\right)v$$

$$= v + \lambda tv + \frac{(\lambda t)^2}{2!}v + \cdots$$

$$= e^{\lambda t}v$$

(since
$$(tA)^k v = (\lambda t)^k v$$
)

Dynamic interpretation

- ▶ for $\lambda \in \mathbb{C}$, solution is complex (we'll interpret later); for now, assume $\lambda \in \mathbb{R}$
- lacktriangleright if initial state is an eigenvector v, resulting motion is very simple always on the line spanned by v
- lacktriangledown solution $x(t)=e^{\lambda t}v$ is called ${\it mode}$ of system $\dot x=Ax$ (associated with eigenvalue λ)
- lacksquare for $\lambda\in\mathbb{R}$, $\lambda<0$, mode contracts or shrinks as $t\uparrow$
- lackbox for $\lambda \in \mathbb{R}$, $\lambda >$ 0, mode expands or grows as $t \uparrow$

Invariant sets

a set $S \subseteq \mathbb{R}^n$ is *invariant* under $\dot{x} = Ax$ if whenever $x(t) \in S$, then $x(\tau) \in S$ for all $\tau \geq t$ *i.e.*: once trajectory enters S, it stays in S

vector field interpretation: trajectories only cut into S, never out

4

Invariant sets

suppose $Av=\lambda v$, v
eq 0, $\lambda\in\mathbb{R}$

- ▶ line $\{ tv \mid t \in \mathbb{R} \}$ is invariant (in fact, ray $\{ tv \mid t > 0 \}$ is invariant)
- lackbox if $\lambda <$ 0, line segment $\{\ tv\ |\ 0 \leq t \leq a\ \}$ is invariant

Complex eigenvectors

suppose $Av = \lambda v$, $v \neq 0$, λ is complex

for $a \in \mathbb{C}$, (complex) trajectory $ae^{\lambda t}v$ satisfies $\dot{x} = Ax$

hence so does (real) trajectory

$$egin{aligned} x(t) &= \Re \left(a e^{\lambda t} v
ight) \ &= e^{\sigma t} \left[egin{aligned} v_{
m re} & v_{
m im} \end{array}
ight] \left[egin{aligned} \cos \omega t & \sin \omega t \ -\sin \omega t & \cos \omega t \end{array}
ight] \left[egin{aligned} lpha \ -eta \end{array}
ight] \end{aligned}$$

where

$$v=v_{
m re}+iv_{
m im}, \quad \lambda=\sigma+i\omega, \quad a=lpha+ieta$$

- lacktriangleright trajectory stays in invariant plane $\mathrm{span}\{v_{\mathrm{re}},v_{\mathrm{im}}\}$
- $ightharpoonup \sigma$ gives logarithmic growth/decay factor
- lacktriangleright ω gives angular velocity of rotation in plane

Dynamic interpretation: left eigenvectors

suppose
$$w^{\mathsf{T}}A = \lambda w^{\mathsf{T}}$$
, $w \neq 0$

then

$$rac{d}{dt}(w^ op x) = w^ op \dot{x} = w^ op Ax = \lambda(w^ op x)$$

 $i.e.,\ w^{\mathsf{T}}x$ satisfies the DE $d(w^{\mathsf{T}}x)/dt = \lambda(w^{\mathsf{T}}x)$

hence
$$w^{\mathsf{T}}x(t) = e^{\lambda t}w^{\mathsf{T}}x(0)$$

- \blacktriangleright even if trajectory x is complicated, w^Tx is simple
- lacktriangleright if, e.g., $\lambda \in \mathbb{R}$, $\lambda < 0$, halfspace { $z \mid w^{\mathsf{T}}z \leq a$ } is invariant (for $a \geq 0$)
- lackbox for $\lambda = \sigma + i\omega \in \mathbb{C}$, $(\Re w)^{\mathsf{T}}x$ and $(\Im w)^{\mathsf{T}}x$ both have form

$$e^{\sigma t}\left(lpha\cos(\omega t)+eta\sin(\omega t)
ight)$$

Summary

- ▶ right eigenvectors are initial conditions from which resulting motion is simple (i.e., remains on line or in plane)
- ▶ *left eigenvectors* give linear functions of state that are simple, for any initial condition

$$\dot{x} = \left[egin{array}{cccc} -1 & -10 & -10 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{array}
ight] x$$

block diagram:

eigenvalues are -1, $\pm i\sqrt{10}$

9

trajectory with x(0) = (0, -1, 1):

left eigenvector associated with eigenvalue -1 is

$$g = \left[egin{array}{c} 0.1 \ 0 \ 1 \end{array}
ight]$$

let's check $g^{\mathsf{T}}x(t)$ when x(0)=(0,-1,1) (as above):

eigenvector associated with eigenvalue $i\sqrt{10}$ is

$$v = \left[egin{array}{c} -0.554 + i0.771 \ 0.244 + i0.175 \ 0.055 - i0.077 \end{array}
ight]$$

so an invariant plane is spanned by

$$v_{
m re} = \left[egin{array}{c} -0.554 \ 0.244 \ 0.055 \end{array}
ight], \quad v_{
m im} = \left[egin{array}{c} 0.771 \ 0.175 \ -0.077 \end{array}
ight]$$

for example, with $x(0)=v_{
m re}$ we have

Example: Markov chain

probability distribution satisfies p(t+1) = Pp(t) $p_i(t) = \operatorname{Prob}(\ z(t) = i\)$ so $\sum_{i=1}^n p_i(t) = 1$ $P_{ij} = \operatorname{Prob}(\ z(t+1) = i\ |\ z(t) = j\)$, so $\sum_{i=1}^n P_{ij} = 1$ (such matrices are called $\underline{stochastic}$)

rewrite as:

$$[1\ 1\ \cdots\ 1]P = [1\ 1\ \cdots\ 1]$$

i.e., $[1\ 1\ \cdots\ 1]$ is a left eigenvector of P with e.v. 1

hence $\det(I-P)=0$, so there is a right eigenvector $v\neq 0$ with Pv=v

it can be shown that v can be chosen so that $v_i \geq 0$, hence we can normalize v so that $\sum_{i=1}^n v_i = 1$

interpretation: v is an equilibrium distribution; i.e., if p(0) = v then p(t) = v for all $t \ge 0$

(if v is unique it is called the *steady-state distribution* of the Markov chain)

Modal form

suppose A is diagonalizable by T define new coordinates by $x=T\tilde{x}$, so

$$T\dot{ ilde{x}} = AT ilde{x} \quad \Leftrightarrow \quad \dot{ ilde{x}} = T^{-1}AT ilde{x} \quad \Leftrightarrow \quad \dot{ ilde{x}} = \Lambda ilde{x}$$

Modal form

in new coordinate system, system is diagonal (decoupled):

trajectories consist of n independent modes, i.e.,

$$ilde{x}_i(t) = e^{\lambda_i t} ilde{x}_i(0)$$

hence the name modal form

Real modal form

when eigenvalues (hence T) are complex, system can be put in *real modal form*:

$$S^{-1}AS = \operatorname{\sf diag}\left(\Lambda_r, M_{r+1}, M_{r+3}, \ldots, M_{n-1}
ight)$$

where $\Lambda_r = \operatorname{diag}(\lambda_1, \ldots, \lambda_r)$ are the real eigenvalues, and

$$M_j = \left[egin{array}{ccc} \sigma_j & \omega_j \ -\omega_j & \sigma_j \end{array}
ight], \quad \lambda_j = \sigma_j + i\omega_j, \quad j = r+1, r+3, \ldots, n$$

where λ_j are the complex eigenvalues (one from each conjugate pair)

Real modal form

block diagram of 'complex mode':

Diagonalization

diagonalization simplifies many matrix expressions

powers (i.e., discrete-time solution):

$$egin{aligned} A^k &= \left(T\Lambda T^{-1}
ight)^k \ &= \left(T\Lambda T^{-1}
ight)\cdots\left(T\Lambda T^{-1}
ight) \ &= T\Lambda^k T^{-1} \ &= T\operatorname{diag}(\lambda_1^k,\ldots,\lambda_n^k)T^{-1} \end{aligned}$$

(for k < 0 only if A invertible, i.e., all $\lambda_i \neq 0$)

Diagonalization

exponential (i.e., continuous-time solution):

$$egin{aligned} e^A &= I + A + A^2/2! + \cdots \ &= I + T\Lambda T^{-1} + \left(T\Lambda T^{-1}\right)^2/2! + \cdots \ &= T(I + \Lambda + \Lambda^2/2! + \cdots)T^{-1} \ &= Te^\Lambda T^{-1} \ &= T\operatorname{diag}(e^{\lambda_1}, \dots, e^{\lambda_n})T^{-1} \end{aligned}$$

Analytic function of a matrix

for any analytic function $f:\mathbb{R} \to \mathbb{R}$, i.e., given by power series

$$f(a) = eta_0 + eta_1 a + eta_2 a^2 + eta_3 a^3 + \cdots$$

we can define f(A) for $A \in \mathbb{R}^{n \times n}$ (i.e., overload f) as

$$f(A) = \beta_0 I + \beta_1 A + \beta_2 A^2 + \beta_3 A^3 + \cdots$$

substituting $A = T\Lambda T^{-1}$, we have

$$egin{aligned} f(A) &= eta_0 I + eta_1 A + eta_2 A^2 + eta_3 A^3 + \cdots \ &= eta_0 T T^{-1} + eta_1 T \Lambda T^{-1} + eta_2 (T \Lambda T^{-1})^2 + \cdots \ &= T \left(eta_0 I + eta_1 \Lambda + eta_2 \Lambda^2 + \cdots
ight) T^{-1} \ &= T \ extbf{diag}(f(\lambda_1), \dots, f(\lambda_n)) T^{-1} \end{aligned}$$

Solution via diagonalization

assume A is diagonalizable consider LDS $\dot{x}=Ax$, with $T^{-1}AT=\Lambda$ then

$$egin{aligned} x(t) &= e^{tA}x(0) \ &= Te^{\Lambda t}T^{-1}x(0) \ &= \sum_{i=1}^n e^{\lambda_i t}(w_i^{ op}x(0))v_i \end{aligned}$$

thus: any trajectory can be expressed as linear combination of modes

Interpretation

- lackbox (left eigenvectors) decompose initial state x(0) into modal components $w_i^\mathsf{T} x(0)$
- $ightharpoonup e^{\lambda_i t}$ term propagates *i*th mode forward *t* seconds
- ▶ reconstruct state as linear combination of (right) eigenvectors

Qualitative behavior of x(t)

- eigenvalues give exponents that can occur in exponentials
- lacktriangleright real eigenvalue λ corresponds to an exponentially decaying or growing term $e^{\lambda t}$ in solution
- complex eigenvalue $\lambda = \sigma + i\omega$ corresponds to decaying or growing sinusoidal term $e^{\sigma t}\cos(\omega t + \phi)$ in solution

Qualitative behavior of x(t)

- \blacktriangleright $\Re \lambda_j$ gives exponential growth rate (if > 0), or exponential decay rate (if < 0) of term
- $\Im \lambda_j$ gives frequency of oscillatory term (if $\neq 0$)

Application

for what x(0) do we have $x(t) \to 0$ as $t \to \infty$?

divide eigenvalues into those with negative real parts

$$\Re \lambda_1 < 0, \ldots, \Re \lambda_s < 0,$$

and the others,

$$\Re \lambda_{s+1} \geq 0, \ldots, \Re \lambda_n \geq 0$$

from

$$x(t) = \sum_{i=1}^n e^{\lambda_i t} (w_i^\mathsf{T} x(0)) v_i$$

condition for $x(t) \rightarrow 0$ is:

$$x(0) \in \mathsf{span}\{v_1, \ldots, v_s\},$$

or equivalently,

$$w_i^{\mathsf{T}} x(0) = 0, \quad i = s+1, \ldots, n$$

(can you prove this?)

Stability of discrete-time systems

suppose A diagonalizable

consider discrete-time LDS x(t+1) = Ax(t)

if
$$A = T\Lambda T^{-1}$$
, then $A^k = T\Lambda^k T^{-1}$

then

$$x(t) = A^t x(0) = \sum_{i=1}^n \lambda_i^t(w_i^ op x(0)) v_i o 0 \quad ext{as } t o \infty$$

for all x(0) if and only if

$$|\lambda_i| < 1, \quad i = 1, \ldots, n.$$

we will see later that this is true even when A is not diagonalizable, so we have

fact: x(t+1) = Ax(t) is stable if and only if all eigenvalues of A have magnitude less than one