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Dynamic interpretation of eigenvectors

I invariant sets

I complex eigenvectors & invariant planes

I left eigenvectors

I modal form

I discrete-time stability
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Dynamic interpretation

suppose Av = �v, v 6= 0

if _x = Ax and x(0) = v, then x(t) = e�tv

several ways to see this, e.g.,

x(t) = etAv =

�
I + tA+

(tA)2

2!
+ � � �

�
v

= v + �tv +
(�t)2

2!
v + � � �

= e�tv

(since (tA)kv = (�t)kv)
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Dynamic interpretation

I for � 2 C, solution is complex (we’ll interpret later); for now, assume � 2 R

I if initial state is an eigenvector v, resulting motion is very simple — always on the line spanned by v

I solution x(t) = e�tv is called mode of system _x = Ax (associated with eigenvalue �)

I for � 2 R, � < 0, mode contracts or shrinks as t "

I for � 2 R, � > 0, mode expands or grows as t "
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Invariant sets

a set S � R
n is invariant under _x = Ax if whenever x(t) 2 S, then x(� ) 2 S for all � � t

i.e.: once trajectory enters S, it stays in S

trajectory

S

vector field interpretation: trajectories only cut into S, never out
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Invariant sets

suppose Av = �v, v 6= 0, � 2 R

I line f tv j t 2 R g is invariant

(in fact, ray f tv j t > 0 g is invariant)

I if � < 0, line segment f tv j 0 � t � a g is invariant

5



Complex eigenvectors

suppose Av = �v, v 6= 0, � is complex

for a 2 C, (complex) trajectory ae�tv satisfies _x = Ax

hence so does (real) trajectory

x(t) = <
�
ae�tv

�

= e�t
�
vre vim

� � cos!t sin!t

� sin!t cos!t

��
�

��

�

where
v = vre + ivim; � = � + i!; a = �+ i�

I trajectory stays in invariant plane spanfvre; vimg

I � gives logarithmic growth/decay factor

I ! gives angular velocity of rotation in plane
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Dynamic interpretation: left eigenvectors

suppose wTA = �wT, w 6= 0

then
d

dt
(wTx) = wT _x = wTAx = �(wTx)

i.e., wTx satisfies the DE d(wTx)=dt = �(wTx)

hence wTx(t) = e�twTx(0)

I even if trajectory x is complicated, wTx is simple

I if, e.g., � 2 R, � < 0, halfspace f z j wTz � a g is invariant (for a � 0)

I for � = � + i! 2 C, (<w)Tx and (=w)Tx both have form

e�t (� cos(!t) + � sin(!t))
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Summary

I right eigenvectors are initial conditions from which resulting motion is simple (i.e., remains on line or in
plane)

I left eigenvectors give linear functions of state that are simple, for any initial condition
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Example

_x =

2
4 �1 �10 �10

1 0 0

0 1 0

3
5x

block diagram:

Z Z Zx1 x2 x3

�1 �10 �10

eigenvalues are �1; � i
p
10
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Example

trajectory with x(0) = (0;�1; 1):
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Example

left eigenvector associated with eigenvalue �1 is

g =

2
4 0:1

0

1

3
5

let’s check gTx(t) when x(0) = (0;�1; 1) (as above):
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Example

eigenvector associated with eigenvalue i
p
10 is

v =

2
4 �0:554 + i0:771

0:244 + i0:175

0:055� i0:077

3
5

so an invariant plane is spanned by

vre =

2
4 �0:554

0:244

0:055

3
5 ; vim =

2
4 0:771

0:175

�0:077

3
5

12



Example

for example, with x(0) = vre we have
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Example: Markov chain

probability distribution satisfies p(t+ 1) = Pp(t)

pi(t) = Prob( z(t) = i ) so
Pn

i=1
pi(t) = 1

Pij = Prob( z(t+ 1) = i j z(t) = j ), so
Pn

i=1
Pij = 1

(such matrices are called stochastic)

rewrite as:
[1 1 � � � 1]P = [1 1 � � � 1]

i.e., [1 1 � � � 1] is a left eigenvector of P with e.v. 1

hence det(I � P ) = 0, so there is a right eigenvector v 6= 0 with Pv = v

it can be shown that v can be chosen so that vi � 0, hence we can normalize v so that
Pn

i=1
vi = 1

interpretation: v is an equilibrium distribution; i.e., if p(0) = v then p(t) = v for all t � 0

(if v is unique it is called the steady-state distribution of the Markov chain)
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Modal form

suppose A is diagonalizable by T

define new coordinates by x = T ~x, so

T _~x = AT ~x , _~x = T�1AT ~x , _~x = �~x
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Modal form

in new coordinate system, system is diagonal (decoupled):

�n

�1

Z

Z
~xn

~x1

trajectories consist of n independent modes, i.e.,

~xi(t) = e�it~xi(0)

hence the name modal form
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Real modal form

when eigenvalues (hence T ) are complex, system can be put in real modal form:

S�1AS = diag (�r;Mr+1;Mr+3; : : : ;Mn�1)

where �r = diag(�1; : : : ; �r) are the real eigenvalues, and

Mj =

�
�j !j
�!j �j

�
; �j = �j + i!j ; j = r + 1; r + 3; : : : ; n

where �j are the complex eigenvalues (one from each conjugate pair)
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Real modal form

block diagram of ‘complex mode’:

�

!

�!

�

Z

Z
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Diagonalization

diagonalization simplifies many matrix expressions

powers (i.e., discrete-time solution):
Ak =

�
T�T�1

�k
=
�
T�T�1

�
� � �
�
T�T�1

�
= T�kT�1

= T diag(�k1 ; : : : ; �
k
n)T

�1

(for k < 0 only if A invertible, i.e., all �i 6= 0)
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Diagonalization

exponential (i.e., continuous-time solution):

eA = I + A+ A2=2! + � � �
= I + T�T�1 +

�
T�T�1

�2
=2! + � � �

= T (I + �+ �2=2! + � � � )T�1

= Te�T�1

= T diag(e�1 ; : : : ; e�n)T�1
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Analytic function of a matrix

for any analytic function f : R! R, i.e., given by power series

f(a) = �0 + �1a+ �2a
2 + �3a

3 + � � �

we can define f(A) for A 2 Rn�n (i.e., overload f) as

f(A) = �0I + �1A+ �2A
2 + �3A

3 + � � �

substituting A = T�T�1, we have

f(A) = �0I + �1A+ �2A
2 + �3A

3 + � � �
= �0TT

�1 + �1T�T�1 + �2(T�T�1)2 + � � �
= T

�
�0I + �1� + �2�

2 + � � �
�
T�1

= T diag(f(�1); : : : ; f(�n))T�1
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Solution via diagonalization

assume A is diagonalizable

consider LDS _x = Ax, with T�1AT = �

then

x(t) = etAx(0)

= Te�tT�1x(0)

=

nX
i=1

e�it(wT
i x(0))vi

thus: any trajectory can be expressed as linear combination of modes
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Interpretation

I (left eigenvectors) decompose initial state x(0) into modal components wT
i x(0)

I e�it term propagates ith mode forward t seconds

I reconstruct state as linear combination of (right) eigenvectors
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Qualitative behavior of x(t)

I eigenvalues give exponents that can occur in exponentials

I real eigenvalue � corresponds to an exponentially decaying or growing term e�t in solution

I complex eigenvalue � = � + i! corresponds to decaying or growing sinusoidal term e�t cos(!t + �) in
solution
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Qualitative behavior of x(t)

I <�j gives exponential growth rate (if > 0), or exponential decay rate (if < 0) of term

I =�j gives frequency of oscillatory term (if 6= 0)

ℜs

ℑseigenvalues
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Application

for what x(0) do we have x(t)! 0 as t!1?

divide eigenvalues into those with negative real parts

<�1 < 0; : : : ;<�s < 0;

and the others,
<�s+1 � 0; : : : ;<�n � 0

from

x(t) =

nX
i=1

e�it(wT
i x(0))vi

condition for x(t)! 0 is:
x(0) 2 spanfv1; : : : ; vsg;

or equivalently,
wT
i x(0) = 0; i = s+ 1; : : : ; n

(can you prove this?)
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Stability of discrete-time systems

suppose A diagonalizable

consider discrete-time LDS x(t+ 1) = Ax(t)

if A = T�T�1, then Ak = T�kT�1

then

x(t) = Atx(0) =

nX
i=1

�ti(w
T
i x(0))vi ! 0 as t!1

for all x(0) if and only if
j�ij < 1; i = 1; : : : ; n:

we will see later that this is true even when A is not diagonalizable, so we have

fact: x(t+ 1) = Ax(t) is stable if and only if all eigenvalues of A have magnitude less than one
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