Dynamic interpretation of eigenvectors

- invariant sets
- complex eigenvectors & invariant planes
- left eigenvectors
- modal form
- discrete-time stability

Dynamic interpretation

suppose
$$Av = \lambda v, v \neq 0$$

if $\dot{x} = Ax$ and $x(0) = v$, then $x(t) = e^{\lambda t}v$
several ways to see this, *e.g.*,

$$\begin{aligned} x(t) &= e^{tA}v = \left(I + tA + \frac{(tA)^2}{2!} + \cdots\right)v \\ &= v + \lambda tv + \frac{(\lambda t)^2}{2!}v + \cdots \\ &= e^{\lambda t}v \end{aligned}$$

(since $(tA)^k v = (\lambda t)^k v$)

Dynamic interpretation

- ▶ for $\lambda \in \mathbb{C}$, solution is complex (we'll interpret later); for now, assume $\lambda \in \mathbb{R}$
- if initial state is an eigenvector v, resulting motion is very simple always on the line spanned by v
- ▶ solution $x(t) = e^{\lambda t}v$ is called *mode* of system $\dot{x} = Ax$ (associated with eigenvalue λ)
- ▶ for $\lambda \in \mathbb{R}$, $\lambda < 0$, mode contracts or shrinks as $t \uparrow$
- ▶ for $\lambda \in \mathbb{R}$, $\lambda > 0$, mode expands or grows as $t \uparrow$

Invariant sets

a set $S\subseteq \mathbb{R}^n$ is invariant under $\dot{x}=Ax$ if whenever $x(t)\in S,$ then $x(\tau)\in S$ for all $\tau\geq t$

i.e.: once trajectory enters S, it stays in S $$$^{\text{trajectory}}$$

vector field interpretation: trajectories only cut into S, never out

Invariant sets

suppose $Av = \lambda v$, $v \neq 0$, $\lambda \in \mathbb{R}$

- ▶ line { tv | t ∈ ℝ } is invariant
 (in fact, ray { tv | t > 0 } is invariant)
- ▶ if $\lambda < 0$, line segment { $tv \mid 0 \le t \le a$ } is invariant

Complex eigenvectors

suppose $Av = \lambda v$, $v \neq 0$, λ is complex for $a \in \mathbb{C}$, (complex) trajectory $ae^{\lambda t}v$ satisfies $\dot{x} = Ax$ hence so does (real) trajectory

$$\begin{aligned} x(t) &= \Re \left(a e^{\lambda t} v \right) \\ &= e^{\sigma t} \left[v_{\rm re} \quad v_{\rm im} \right] \left[\begin{array}{c} \cos \omega t & \sin \omega t \\ -\sin \omega t & \cos \omega t \end{array} \right] \left[\begin{array}{c} \alpha \\ -\beta \end{array} \right] \end{aligned}$$

where

$$v = v_{\rm re} + i v_{\rm im}, \quad \lambda = \sigma + i \omega, \quad a = \alpha + i \beta$$

- trajectory stays in *invariant plane* span $\{v_{re}, v_{im}\}$
- σ gives logarithmic growth/decay factor
- $\blacktriangleright \ \omega$ gives angular velocity of rotation in plane

Dynamic interpretation: left eigenvectors

suppose
$$w^{\mathsf{T}}A = \lambda w^{\mathsf{T}}$$
, $w \neq 0$

then

$$\frac{d}{dt}(w^{\mathsf{T}}x) = w^{\mathsf{T}}\dot{x} = w^{\mathsf{T}}Ax = \lambda(w^{\mathsf{T}}x)$$

 $i.e.,~w^{\mathsf{T}}x$ satisfies the DE $d(w^{\mathsf{T}}x)/dt = \lambda(w^{\mathsf{T}}x)$ hence $w^{\mathsf{T}}x(t) = e^{\lambda t}w^{\mathsf{T}}x(0)$

- even if trajectory x is complicated, $w^{\mathsf{T}}x$ is simple
- ▶ if, e.g., $\lambda \in \mathbb{R}$, $\lambda < 0$, halfspace { $z \mid w^{\mathsf{T}}z \leq a$ } is invariant (for $a \geq 0$)
- ▶ for $\lambda = \sigma + i\omega \in \mathbb{C}$, $(\Re w)^{\mathsf{T}}x$ and $(\Im w)^{\mathsf{T}}x$ both have form

 $e^{\sigma t} \left(\alpha \cos(\omega t) + \beta \sin(\omega t) \right)$

Summary

- right eigenvectors are initial conditions from which resulting motion is simple (*i.e.*, remains on line or in plane)
- *left eigenvectors* give linear functions of state that are simple, for any initial condition

$$\dot{x} = \begin{bmatrix} -1 & -10 & -10\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{bmatrix} x$$

block diagram:

eigenvalues are $-1, \pm i\sqrt{10}$

left eigenvector associated with eigenvalue $-1 \mbox{ is }$

$$g = \begin{bmatrix} 0.1\\0\\1 \end{bmatrix}$$

t

let's check $g^{\mathsf{T}}x(t)$ when x(0) = (0, -1, 1) (as above): 0.9 0.8 0.7 0.6 x^{T} 0.5 6 0.4 0.3 0.2 0.1 0 1.5 2.5 3 3.5 4 4.5

5

eigenvector associated with eigenvalue $i\sqrt{10}$ is

$$v = \begin{bmatrix} -0.554 + i0.771\\ 0.244 + i0.175\\ 0.055 - i0.077 \end{bmatrix}$$

so an invariant plane is spanned by

$$v_{\rm re} = \begin{bmatrix} -0.554\\ 0.244\\ 0.055 \end{bmatrix}, \quad v_{\rm im} = \begin{bmatrix} 0.771\\ 0.175\\ -0.077 \end{bmatrix}$$

Example: Markov chain

probability distribution satisfies p(t+1) = Pp(t)

 $p_i(t) = \operatorname{Prob}(z(t) = i)$ so $\sum_{i=1}^n p_i(t) = 1$

 $P_{ij} = \operatorname{Prob}(z(t+1) = i \mid z(t) = j)$, so $\sum_{i=1}^{n} P_{ij} = 1$ (such matrices are called *stochastic*)

rewrite as:

$$[1 \ 1 \ \cdots \ 1]P = [1 \ 1 \ \cdots \ 1]$$

i.e., $\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$ is a left eigenvector of P with e.v. 1

hence det(I - P) = 0, so there is a right eigenvector $v \neq 0$ with Pv = v

it can be shown that v can be chosen so that $v_i \ge 0$, hence we can normalize v so that $\sum_{i=1}^{n} v_i = 1$

interpretation: v is an *equilibrium distribution*; *i.e.*, if p(0) = v then p(t) = v for all $t \ge 0$

(if v is unique it is called the *steady-state distribution* of the Markov chain)

Modal form

suppose A is diagonalizable by T define new coordinates by $x = T\tilde{x}$, so $T\dot{\tilde{x}} = AT\tilde{x} \quad \Leftrightarrow \quad \dot{\tilde{x}} = T^{-1}AT\tilde{x} \quad \Leftrightarrow \quad \dot{\tilde{x}} = \Lambda \tilde{x}$

Modal form

in new coordinate system, system is diagonal (decoupled):

trajectories consist of n independent modes, *i.e.*,

$$\tilde{x}_i(t) = e^{\lambda_i t} \tilde{x}_i(0)$$

hence the name modal form

Real modal form

when eigenvalues (hence T) are complex, system can be put in *real modal form*:

$$S^{-1}AS = \text{diag}(\Lambda_r, M_{r+1}, M_{r+3}, \dots, M_{n-1})$$

where $\Lambda_r = \operatorname{diag}(\lambda_1, \ldots, \lambda_r)$ are the real eigenvalues, and

$$M_j = \begin{bmatrix} \sigma_j & \omega_j \\ -\omega_j & \sigma_j \end{bmatrix}, \quad \lambda_j = \sigma_j + i\omega_j, \quad j = r+1, r+3, \dots, n$$

where λ_j are the complex eigenvalues (one from each conjugate pair)

Real modal form

block diagram of 'complex mode':

Diagonalization

diagonalization simplifies many matrix expressions powers (*i.e.*, discrete-time solution):

$$A^{k} = (T\Lambda T^{-1})^{k}$$

= $(T\Lambda T^{-1}) \cdots (T\Lambda T^{-1})$
= $T\Lambda^{k}T^{-1}$
= $T \operatorname{diag}(\lambda_{1}^{k}, \dots, \lambda_{n}^{k})T^{-1}$

(for k < 0 only if A invertible, *i.e.*, all $\lambda_i \neq 0$)

Diagonalization

exponential (*i.e.*, continuous-time solution):

$$e^{A} = I + A + A^{2}/2! + \cdots$$

= $I + T\Lambda T^{-1} + (T\Lambda T^{-1})^{2}/2! + \cdots$
= $T(I + \Lambda + \Lambda^{2}/2! + \cdots)T^{-1}$
= $Te^{\Lambda}T^{-1}$
= $T \operatorname{diag}(e^{\lambda_{1}}, \dots, e^{\lambda_{n}})T^{-1}$

Analytic function of a matrix

for any analytic function $f : \mathbb{R} \to \mathbb{R}$, *i.e.*, given by power series

$$f(a) = \beta_0 + \beta_1 a + \beta_2 a^2 + \beta_3 a^3 + \cdots$$

we can define f(A) for $A \in \mathbb{R}^{n \times n}$ (*i.e.*, overload f) as

$$f(A) = \beta_0 I + \beta_1 A + \beta_2 A^2 + \beta_3 A^3 + \cdots$$

substituting $A = T\Lambda T^{-1}$, we have

$$f(A) = \beta_0 I + \beta_1 A + \beta_2 A^2 + \beta_3 A^3 + \cdots$$

= $\beta_0 T T^{-1} + \beta_1 T \Lambda T^{-1} + \beta_2 (T \Lambda T^{-1})^2 + \cdots$
= $T \left(\beta_0 I + \beta_1 \Lambda + \beta_2 \Lambda^2 + \cdots \right) T^{-1}$
= $T \operatorname{diag}(f(\lambda_1), \dots, f(\lambda_n)) T^{-1}$

Solution via diagonalization

assume A is diagonalizable consider LDS $\dot{x}=Ax,$ with $T^{-1}AT=\Lambda$ then

$$\begin{aligned} x(t) &= e^{tA} x(0) \\ &= T e^{\Lambda t} T^{-1} x(0) \\ &= \sum_{i=1}^{n} e^{\lambda_i t} (w_i^{\mathsf{T}} x(0)) v_i \end{aligned}$$

thus: any trajectory can be expressed as linear combination of modes

Interpretation

- (left eigenvectors) decompose initial state x(0) into modal components $w_i^{\mathsf{T}} x(0)$
- $\blacktriangleright e^{\lambda_i t}$ term propagates $i {\rm th}$ mode forward t seconds
- ▶ reconstruct state as linear combination of (right) eigenvectors

Qualitative behavior of x(t)

- eigenvalues give exponents that can occur in exponentials
- \blacktriangleright real eigenvalue λ corresponds to an exponentially decaying or growing term $e^{\lambda t}$ in solution
- ► complex eigenvalue $\lambda = \sigma + i\omega$ corresponds to decaying or growing sinusoidal term $e^{\sigma t} \cos(\omega t + \phi)$ in solution

Qualitative behavior of x(t)

- ℜλ_j gives exponential growth rate (if > 0), or exponential decay rate (if < 0)
 of term
 </p>
- $\Im \lambda_j$ gives frequency of oscillatory term (if $\neq 0$)

Application

for what x(0) do we have $x(t) \to 0$ as $t \to \infty?$ divide eigenvalues into those with negative real parts

$$\Re \lambda_1 < 0, \ldots, \Re \lambda_s < 0,$$

and the others,

$$\Re \lambda_{s+1} \ge 0, \dots, \Re \lambda_n \ge 0$$

from

$$x(t) = \sum_{i=1}^{n} e^{\lambda_i t} (w_i^{\mathsf{T}} x(0)) v_i$$

condition for $x(t) \rightarrow 0$ is:

$$x(0) \in \operatorname{span}\{v_1, \ldots, v_s\},\$$

or equivalently,

$$w_i^{\mathsf{T}} x(0) = 0, \quad i = s + 1, \dots, n$$

(can you prove this?)

Stability of discrete-time systems

suppose A diagonalizable

consider discrete-time LDS x(t+1) = Ax(t)if $A = T\Lambda T^{-1}$, then $A^k = T\Lambda^k T^{-1}$

then

$$x(t) = A^t x(0) = \sum_{i=1}^n \lambda_i^t(w_i^\mathsf{T} x(0)) v_i \to 0 \quad \text{as } t \to \infty$$

for all x(0) if and only if

$$|\lambda_i| < 1, \quad i = 1, \dots, n.$$

we will see later that this is true even when A is not diagonalizable, so we have fact: x(t+1) = Ax(t) is stable if and only if all eigenvalues of A have magnitude less than one