
EE263, Summer 2017
July 21-23, 2017

Midterm Exam Solutions

This is a 24 hour take-home exam with 5 problems. Please turn it in on Gradescope 24 hours
after you pick it up.

• You may use any books, notes, or computer programs (e.g., matlab), but you may not
discuss the exam with others until Jul. 24, after everyone has taken the exam. The
only exception is that you can ask the course staff for clarification, by emailing to the
staff email address {k2shah, bbartan, liyues} @stanford.edu. We’ve tried pretty
hard to make the exam unambiguous and clear, so we’re unlikely to say much. Please
do not post any exam related questions on Piazza.

• Since you have 24 hours, we expect your solutions to be legible, neat, and clear. Do
not hand in your rough notes, and please try to simplify your solutions as much as you
can. We will deduct points from solutions that are technically correct, but much more
complicated than they need to be.

• Please check your email and canvas a few times during the exam, just in case we need
to send out a clarification or other announcement. It’s unlikely we’ll need to do this,
but you never know.

• Assemble your solutions to the problems in order, i.e., problem 1, problem 2, . . . ,
problem 5. Start each solution on a new page.

• Please make a copy of your exam before handing it in. We have never lost one, but it
might occur.

• If a problem asks for some specific answers, make sure they are obvious in your solu-
tions. You might put a box around the answers, so they stand out from the surrounding
discussion, justification, plots, etc.

• When a problem involves some computation (say, using matlab), we do not want just
the final answers. We want a clear discussion and justification of exactly what you did,
the matlab source code that produces the result, and the final numerical result. Be sure
to show us your verification that your computed solution satisfies whatever properties
it is supposed to, at least up to numerical precision. For example, if you compute a
vector x that is supposed to satisfy Ax = b (say), show us the matlab code that checks
this, and the result. (This might be done by the matlab code norm(A*x-b); be sure
to show us the result, which should be very small.) We will not check your numerical
solutions for you, in cases where there is more than one solution.
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• In the portion of your solutions where you explain the mathematical approach, you
cannot refer to matlab operators, such as the backslash operator. (You can, of course,
refer to inverses of matrices, or any other standard mathematical construct.)

• Some of the problems are described in a practical setting, such as alien power systems
or computer vision. You do not need to understand anything about the application area
to solve these problems. We’ve taken special care to make sure all the information and
math needed to solve the problem is given in the problem description.

• Some of the problems require you to download and run a matlab/json file to generate
the data needed. These files can be found at the URL

http://ee263.stanford.edu/exams/mt-data.zip

Some test.py scripts are given to show you how to import the data

• Please respect the honor code. Although we encourage you to work on homework
assignments in small groups, you cannot discuss the exam with anyone, with the ex-
ception of EE263 course staff, until July 24, when everyone has taken it an the solutions
are posted online.
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1. And Away We Go!

(a) Show that the eigenvalues of A and AT are the same

(b) Show that if the eigenvalues of A are λ1 . . . λn and A is invertible, then the eigen-
values of A−1 are λ−11 . . . λ−1n

(c) Let x, y ∈ Rn. Show that if ||x|| = ||y|| = 1 and xTy = 1 then x = y

(d) Let a, b ∈ Rn and H ∈ S+ where S+ is the set of positive semidefinite matrices,
that is xTHx ≥ 0 ∀x ∈ Rn. Show that if Ha = b and Hb = a then a = b. Hint :
use a norm

Solution.

(a) 4 points

Since det(A) = det(AT ) we see that det(Iλ−A) = det(Iλ−A)T = det(Iλ−AT ).
Thus the roots of both the polynomials are the same, therefore the eigenvalues
are the same.

(b) 5 points

A = TΛT−1 so A−1 = (TΛT−1)−1 = TΛ−1T−1

it follows that ΛΛ−1 = I thus Λ−1 = diag(λ−11 . . . λ−1n )

Some people did showed that for a arbitrary eigenvalue of A, it can be shown that
the reciprocal is an eigenvalue of A−1

(c) 5 points

Consider ||x−y||2 = (x−y)T (x−y) = xTx−xTy−yTx+yTy = 1−1−1 + 1 = 0
Thus x− y = 0 since by the definiteness of norms ||z|| = 0 iif z = 0

(d) 6 points

since a−b ∈ realsn it follows from H being positive semidefinite (a−b)TH(a−b) ≥
0, but (a−b)TH(a−b) = (a−b)T (Ha−Hb) = (a−b)T (b−a) = −(a−b)T (a−b) =
−||a− b|| which must be nonpositive as norms are nonnegative. Therefore

0 ≤ (a− b)TH(a− b) ≤ 0

thus a-b=0 since any other value would violate one of the two statements above.

Some people noticed that H(a-b)=b-a = -(a-b) which implies that a-b is an eigen-
vector of H with eigenvalue -1, which would violate the premise, thus either a-b=0.
Some claimed that this means H = −I which is indeed not true.

Also some claimed that since ||a|| = ||b|| or aTHa = bTHb then a = b, but that is
also not true, as you can take H = I and a, b as any unit vector
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2. You Must Construct Additional Pylons

You are the Hierarch of the Baelaam charged with maintaining the power levels of
energizing pylons which power various structures in your base of operations. Consider
m structures powered by n pylons. Each structure’s energy level yj for j = 1...m is
given by

yj(p) = log(
n∑

i=1

exp(
pi
d2j,i

))

Where pi are the power levels of the i’th pylon and dj,i are the distances between the
j’th structure and the i’th pylon (we choose log-sum-exp as a smooth approximation
of the max function). While each structure has some given target energy level Rj, they
can handle some deviation (either over or under), however that will cause damage to
the Nexus Crystals that act as energy conduits for the structure. Your goal as Hierarch
is to find a set of pylon power levels p ∈ Rn that minimizes the total square deviation,
J , from the required energy levels.

J(p) =
m∑
j=1

(Rj − yj(p))2

Your chief engineer proposes that you could linearize the yj(p) function to find an
update algorithm that starts with some initial pylon power level and changes the power
each step by a small amount to reduce the total energy deviation J.

(a) Find an update expression for the approximate power level y(p + δp) as a linear
dynamical system where y ∈ Rm is the vector of structure energy levels. I.E find
A and B such that

y(p+ δp) ≈ Ay(p) +Bδp

We want to relate the energy level at p+δp to the energy level at p and the change
in energy from a small change in power δp.

hint : B is not necessarily constant

(b) Derive an expression for the one step change in power levels that minimizes

J(p+ δp) =
m∑
j=1

(Rj − yj(p+ δp))2

as a function of y(p), A,B, δp. Use the result of this minimization problem, (the
optimal δp) to determine an update expression for p[k + 1] = p[k] + αδp, where
α is a given step size, and k is the current iteration. If your method involves an
inverse, explain what conditions must hold in order for the inverse to exist.
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(c) Given the following list of required energy levels and locations of each structure
and pylon, apply your algorithm for 200 iterations with an α = .01 and in initial
power level of p[0] =[20, 40, 20].

Plot the pylon power levels and the structures energy levels for each iteration. as
well as the the power deviation metric J. There should be 3 plots total. It should
converge in roughly 150-200 iterations.

Also report the final cost and pylon power levels

Stucture_energy_goal=[10, 20 , 5 , 10 , 5]

Strcuture_location=[2 8; 4 5; 6 8; 2 2; 4 1]

Pylon_location=[2 5; 3 4 ; 5 4]

p0=[20 40 20]

For locations, each row is an x,y location.

Solution.

(a) 6 points

First we linearize the energy function by finding the Jacobian of the energy func-
tion. Clearly A = I , but B is a bit more involved

y(p+ αδp) = y(p) +Bδp = y(p) +


∂y1
∂p1

. . . ∂y1
∂pn

...
...

...
∂ym
∂p1

. . . ∂ym
∂pn

 δp
now we find the partial derivatives

∂yj
∂pi

=
exp( pi

d2j,i
)∑n

i=1 exp( pi
d2j,i

)

1

d2j,i

We see that B is now just a function of p. Partial Credit was given to those who
attempted to find B

(b) 7 points

We can substitute our expression for y[k + 1] here

J [k + 1] = ||(R− (y(p) +Bδp)||2 = ||z −Hδp||2

Where z is the difference between R − y[k] (the last error vector) and H is the
Jacobian matrix of the energy function Which yields δp(HTH)−1HT z as the ex-
pression that minimizes the one step power update. Thus the update to the pylon
power is given by

y[k + 1] = y[k] + α(HTH)−1HT (R− y[k])
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(c) 7 points Final pylon power levels after 200 iterations

[81.3, 35.2, 34.7]

Final cost 3.7

for 50 iterations

Final pylon power levels [52.7, 40.3, 35.7]

Final cost 24.1

Code (in Julia) that solves this problem

us ing Gadfly , ColorBrewer
#s t r u c t u r e s
R loc=Float64 [ 2 8 ; 4 5 ; 6 8 ; 2 2 ; 4 1 ]
R goal =[10 , 20 , 5 , 10 , 5 ]
nR=s i z e ( R loc , 1)
#pylons
P loc=Float64 [ 2 5 ; 3 4 ; 5 4 ]
p0=Float64 [20 40 20 ]
nP=s i z e ( P loc , 1 ) ;

#show world
l a y e r s=Layer [ ]
append ! ( l aye r s , l a y e r ( x=R loc [ : , 1 ] , y=R loc [ : , 2 ] , Geom. point ,

Theme( d e f a u l t c o l o r=co l o r an t ” red ”) ) )
append ! ( l aye r s , l a y e r ( x=P loc [ : , 1 ] , y=P loc [ : , 2 ] , Geom. point ,

Theme( d e f a u l t c o l o r=co l o r an t ” blue ”) ) )
p l o t ( l a y e r s . . . , )

#d i s t a n c e s squared
d=[norm( R loc [ j , : ] − P loc [ i , : ] ) ˆ 2 f o r j =1:nR, i =1:nP ]

func t i on evalPower (p , d)
re turn [ l og (sum ( [ exp (p [ j ] / d [ i , j ] ) f o r j in 1 : s i z e (d , 2 ) ] ) )

f o r i in 1 : s i z e (d , 1 ) ]
end
func t i on makeGrad(p , d)

re turn [ sum( exp (p . / d [ i , : ] ) ) ˆ −1 ∗ exp (p [ j ] / d [ i , j ] ) / d [ i , j ]
f o r i in 1 : s i z e (d , 1 ) , j in 1 : s i z e (d , 2) ]

end

t=200
p h i s t=ze ro s ( l ength ( p0 ) , t+1)
R hi s t=ze ro s (nR, t )
j h i s t=ze ro s ( t )
p h i s t [ : , 1]= p0
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f o r i =1: t
p=p h i s t [ : , i ]
R h i s t [ : , i ]=evalPower (p , d)
y=R goal−evalPower (p , d)
j h i s t [ i ]=norm( y )
A=makeGrad(p , d)
dp=pinv (A)∗y
p h i s t [ : , i +1]=p+.01∗dp

end

@show p h i s t [ : , end ]
norm( R goal−evalPower ( p h i s t [ : , end ] , d ) )ˆ2 #l a s t e r r o r

g co l=greens = p a l e t t e (” Set1 ” , nP ) ;
l a y e r s =[ l a y e r ( x=0: t , y=p h i s t [ pylon , : ] , Geom. path ,

Theme( d e f a u l t c o l o r=gco l [ pylon ] ) ) f o r pylon =1:nP ]
p l o t ( l a y e r s . . . ,

Guide . x l a b e l (” i t e r ” ) , Guide . y l a b e l (” Power ”) ,
Guide . t i t l e (” Pylon Power ” ) )

#s t r u c t u r e
gco l=greens = p a l e t t e (” Set1 ” , nR ) ;
l a y e r s =[ l a y e r ( x=1: t , y=R hi s t [R, : ] , Geom. path ,

Theme( d e f a u l t c o l o r=gco l [R] ) ) f o r R=1:nR]
p l o t ( l a y e r s . . . ,

Guide . x l a b e l (” i t e r ” ) , Guide . y l a b e l (” Energy ”) ,
Guide . t i t l e (” St ruc ture Energy ”) )

#e r r o r
p l o t ( x=1: t , y=j h i s t , Geom. path ,

Guide . x l a b e l (” i t e r ” ) , Guide . y l a b e l (” Error ”) ,
Guide . t i t l e (” Energy Deviat ion ”) )

7



Figure 1: pylon power levels
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Figure 2: structure energy levels
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Figure 3: cost
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3. Oh The Places You Could Go!

(Note: This problem deals with discrete-time Markov chains. But, you are not expected
to have any prior knowledge of Markov chains. Everything you need to solve the problem
is given in the problem statement.)

A Markov chain is a process with a set of states and probabilities of moving from one
state to another. A Markov chain can be represented as a directed graph where edges
have probability values assigned to them. Nodes in a Markov chain are called states.
Remember that the edges are oriented in a directed graph.

We can specify a Markov chain of n states using its transition matrix P ∈ Rn×n, where
Pij is the probability that given the current state is j, the next state will be i. Note
that if there is no edge from state j to state i, then we have Pij = 0. See the simple
example below for an illustration. Consider the following state diagram:

0.2 0.8

0.650.3

0.7

0.35

1 2

3

The transition matrix P of this Markov chain is

P =

0.2 0.35 0.3
0.8 0 0
0 0.65 0.7

 .
In this example, consider the transition from state 2 to state 3. In the state diagram,
the transition from state 2 to state 3 has a probability of 0.65; thus, P32 = 0.65. Now,
consider the edge from state 1 to again state 1. This means that given the current
state is 1, with probability 0.2, the state will not change. Hence, P11 = 0.2. Lastly,
note that there is no edge from state 1 to state 3. This means that if the current state
is 1, the next state cannot be 3. Thus, P31 = 0.

Just as in graphs, we have paths in Markov chains too. A path of length l from state
j to state i is a sequence of l + 1 states s0 = j, s1, ..., sl = i, with Psk+1,sk 6= 0 for
k = 0, 1, ..., l − 1. Furthermore, the probability of a path is calculated by multiplying
all the edge probabilities along the path:

Pr(path) =
k=l−1∏
k=0

Psk+1,sk .
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For example, in the given state diagram, consider the sequence 3, 1, 1, 2, 1. This is
a path of length 4 starting from state 3 and ending at state 1. The probability of
this particular path with states 3, 1, 1, 2, 1 is calculated as: P13 × P11 × P21 × P12 =
0.3× 0.2× 0.8× 0.35 = 0.0168.

Now, here is the problem. Consider a Markov chain of n states with transition matrix
P ∈ Rn×n. Answer the following questions.

(a) Let B = P k, where k ∈ Z, k ≥ 1. Give a simple interpretation of Bij in terms of
the original Markov chain. Explain why this interpretation is true. (Hint: You
might want to use the definition of a path in a Markov chain given above.)

The remaining parts concern the specific Markov chain given in the file ’markov chain.* ’.
For the following parts, please first briefly explain how to solve the question and
then give your answer (enclosed in a box) and code.

(b) What is the length of the shortest possible path from state 7 to state 3?

(c) What is the sum of the probabilities of all such paths (7 to 3) with length equal
to what you found in part b?

(d) Consider all possible paths of length 9 or less from state 2 to state 3. What is
the weighted average of the lengths of all these paths with weights being the path
probabilities; that is, find

|S|∑
i=1

Pr(pathi)l(pathi),

where S is the set of all possible paths of length 9 or less from state 2 to state 3,
and l(pathi) is the length of pathi? (The weighted average expression given above
would be called expected path length for paths of length 9 or less, if we had scaled
the probabilities such that they sum to 1.)

(e) Note that in the given transition matrix P , we have Pi5 = 0 for all i ∈ {1, ..., n}\{5}
(this is the set of 1..n with 5 removed) and P55 = 1. This means that state 5 is an
absorbing state, meaning that once we reach this state, there is no escape because
P55 = 1. Let aj denote the probability of eventually reaching state 5 when the
starting state is j. We have the following expression for aj’s:

aj =
n∑

i=1

Pijai.

For this part of the problem, we will compute aj’s for all j = 1, ..., n. Find aj’s
using the given expression. Comment on the aj values you found, using at most
two sentences. (Hint: It might be useful to form a vector from aj’s, excluding a5
since it is already known: a5 = 1.)

Solution.
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(a) 4 points Bij is the probability that we’ll reach state i from state j in k steps.
Or, it is the sum of probabilities of all paths of length k from state j to state i.

(b) 4 points By checking when B37 becomes nonzero at each iteration over k where
B = P k, we can find the shortest path length. It’s the smallest k for which B37

is nonzero. The answer is 3. The following code solves this problem:

%% part b
k = 1 ;
B = Pˆk ;
whi l e B(3 , 7 ) == 0

k = k+1;
B = Pˆk ;

end
s h o r t e s t p a t h l e n g t h = k

(c) 2 points Let us denote the result from part b by lshort. Then, the sum of the
probabilities of particular paths of length 3 is given by B37, where B = P lshort .
The answer is 0.1674. The following code solves this:

%% part c
sho r t e s t pa th p rob = B(3 , 7 )

(d) 5 points Note that the probability of a path of certain length is given by the
corresponding index of the transition matrix raised to a power equal to the path
length. Thus, we need all probabilities for all paths of lengths 1, .., 9. Then, we’ll
multiply these probabilities with their corresponding lengths and sum them all
up. The answer is 4.1302. The code is as follows:

%% part d
summ = 0 ;
f o r k = 1 :9

B = Pˆk ;
summ = summ + B(3 ,2 )∗ k ;

end
summ

(e) 5 points We can express the given equation in this form: a = P Ta, where a is a
column vector filled with aj’s. Because we know a5, let us remove it from a and
call it ã. Then, we have ã = P̃ ã + b, where P̃ is P with 5th row and column
removed, and b is the 5th column of P T with 5th entry removed. Moving P̃ ã to
the left-hand side of the equation, we get:

(I − P̃ )ã = b.

Solving this linear system, we get the result: ã = [1, 1, 1, 1, 1, 1]T . Adding a5, we
have a = [1, 1, 1, 1, 1, 1, 1]T . All aj’s are found to be 1. This makes sense because
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there is only one absorbing state in the given Markov chain and in the end it is
inevitable that whichever state we start, we’ll end up in the absorbing state. It
is important to notice that this is possible because there is only one absorbing
state. If there was 2 or more, then we wouldn’t get all aj’s equal to 1. The code
for this part is as follows:

%% part e
n = s i z e (P , 1 ) ;
P t i l d e = P;
P t i l d e ( 5 , : ) = [ ] ;
P t i l d e ( : , 5 ) = [ ] ;
a t i l d e = inv ( eye (n−1) − P t i l d e ’ ) ∗ P(5 , [ 1 : 4 , 6 : end ] ) ’

Note: It is possible to solve this problem in a couple of different ways. One way
is to notice that a in the equation a = P Ta is the eigenvector corresponding to
the eigenvalue 1. Then you need to scale the vector a such that a5 = 1. Another
solution is to take a high power of P , say 100 and look at the 5’th row, which is all
1’s. To understand this approach, note this: The 5’th row gives the probability of
being in state 5 after 100 transitions/steps where the starting state is the column
number. So, the 5’th row will give the vector a.

To get full credit from this problem, you could’ve used any of the 3 approaches
above (or some other solution) as long as you support your solution with some
math. The hint was to point you to the first solution above.
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4. Walk The Line

Consider a toy vehicle on a 1-dimensional path. Let vi denote the velocity of the vehicle
in the time interval t ∈ [i, i+1). The vehicle spends a kinetic energy of Ei = bv2i during
t ∈ [i, i+ 1). b ∈ R here is a given constant. Furthermore, extra energy is lost due to
extreme wind. Let the energy lost in [i, i+ 1) be denoted by Li. We model the energy
loss as Li = kivi, where ki is the loss coefficient in t ∈ [i, i + 1). Our purpose is to
determine vi, i = 1, ..., n that minimize the total kinetic energy use. But, we are also
given some constraints that vi’s need to satisfy:

• The first constraint is that the mean of all velocities must be equal to the given
vmean. That is,

1

n

n∑
i=1

vi = vmean

must be satisfied.

• The second set of constraints is the velocities vj must satisfy vj = vgivenj for some
subset of indices, that is for some velocities there is a strict constraint.

• The final constraint is that the sum of the total energy loss must be equal to the
given Ltotal:

n∑
i=1

Li = Ltotal.

(Note: It would make more sense to model the last constraint as an inequality
instead of an equality. However, since we want to restrict the problem to what
we have seen in this class, we made this constraint an equality to make things
simpler. You can think about this as a worse case)

The goal of the problem is to find the velocities that minimize the total kinetic energy
usage E, where

E =
n∑

i=1

Ei,

subject to the given constraints.

(a) Set this problem up as an optimization problem with a quadratic cost and linear
constraints. Then, find the solution of the problem; that is, find the expression
for the velocities that minimize the cost, subject to the constraints.

(b) Solve the problem for the data given in ’minimizing kinetic energy.* ’. Report the
minimum total kinetic energy and the velocities. Plot the velocity as a function
of time. In another figure, also plot the given loss coefficients ki. Comment briefly
(1-2 sentences) on the relationship between the velocities and ki’s. Submit the
plots.
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(c) We now modify our optimization problem by adding another term to the objec-
tive, in order to smooth the velocity and reduce acceleration. Let J be the new
objective:

J = E + µ
n∑

i=2

(vi − vi−1)2.

Explain how to minimize J subject to the same given constraints. Then, solve
the problem for the given data. Take µ = 10000. Report the minimum objective
and the velocities. Plot the velocity as a function of time. Submit the plot and
code.

(d) Comment briefly on the effect of the additional term in the objective J on the
velocities. (no need for a long explanation, 1 or 2 sentences would be sufficient)

Solution.

(a) 6 points Let us define the vector v =
[
v1 ... vn

]T
. We can rewrite the total

kinetic energy as: E = b‖v‖22. Now, we’ll write all of the constraints in terms of
v. First constraint can be rewritten as:

1

n

[
1 ... 1

]
v = vmean.

Second set of constraints:
eTj v = vgivenj

for j ∈ J , where ej is the standard unit vector; that is, ej is an n-dimensional
vector full of zeros except for the j’th entry which is a 1.

Third constraint: [
k1 ... kn

]
v = Ltotal.

We can express all of these constraints in a single matrix equation: Av = y, where

A =


1
n
1T

kT

ej1
...
ejm

 .

Note that in the above expression, we take J = {j1, ..., jm}. Furthermore, y is
defined as y =[
vmean Ltotal vgivenj1

... vgivenjm

]T
. We now have the following constrained opti-

mization problem:
minimize

v
b‖v‖22

subject to Av = y.
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This is a least-norm problem. The solution is v = AT (AAT )−1y.

Note: If you can convert a problem into an optimization problem you know the
solution of (such as a least-norm problem as above), then you can simply apply
the solution. You don’t need to find the Lagrangian and optimality conditions.
The solution v = AT (AAT )−1y was already obtained using Lagrangian. There is
no need to repeat the steps. You can simply use the solution v = AT (AAT )−1y,
if you converted your problem into a least-norm problem. But, of course, you’re
free to use the Lagrangian approach (which is not really necessary for this part
and requires more work) as long as you use it correctly.

Note 2: In an optimization problem with constraints, we always are looking for
solutions that satisfy the constraints. If a solution doesn’t satisfy the constraints,
then we don’t really have a solution. It might happen that there is no solution
for the constraints. Then, the optimization problem has no solution. But, in this
class, we select the constraints such that there always exist points that satisfy the
constraints and we want to pick our solution from that set of points such that it
minimizes the objective.

(b) 4 points Minimum E is 62597. The velocities are: [48.0000 48.0990 47.5527
48.5238 49.4343 49.9806 50.2840 48.2810 54.7756 55.6253 50.1019 48.2203 48.1596
48.5238 49.0094 50.0000 50.2840 50.0412 51.4373 53.2582 49.6164 49.7985 50.1019
50.8910 50.0000].

The plot is as follows:
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100  k i

velocity v i

The relationship between ki’s and the velocities is that at times when ki is small,
the velocity is high.

The following Matlab code solves this problem:

%% par t b
% A matrix
A = 1/n ∗ ones (1 , n ) ;
A = [A; k ’ ] ;
for j = 1 : length ( J )
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tmp = zeros (1 , n ) ;
tmp( J ( j ) ) = 1 ;
A = [A; tmp ] ;

end
% y v e c t o r
y = [ v mean ; L t o t a l ; v g iven ’ ] ;

% s o l v i n g f o r v
v = A’∗ inv (A∗A’ ) ∗ y
t o t a l k i n e t i c e n e r g y = b∗norm(v , 2 ) ˆ2

% p l o t
f igure ; plot ( 1 : n , 100∗k ) ;
hold on ;
plot ( 1 : n , v ) ;
xlabel ( ’ time ’ ) ;
legend ( ’ 100\ t imes k i ’ , ’ v e l o c i t y v i ’ ) ;

(c) 8 points Let us define the following matrix:

B =


1 −1 0 ... 0 0
0 1 −1 ... 0 0
...

...
... ...

...
...

0 0 0 ... 1 −1

 .
Now, we can rewrite the objective as follows:

J = b‖v‖2 + µ‖Bv‖2.

Moving the constants inside the norms, we get:

J = ‖
√
bv‖2 + ‖√µBv‖2.

We can now write this as a single norm: J = ‖Dv‖2, where

D =

[√
bIn√
µB

]
We have the following optimization problem:

minimize
v

‖Dv‖22
subject to Av = y.

We can solve this problem using the last expression given in page 15 of lecture
slides 17:

v = (DTD)−1AT (A(DTD)−1AT )−1y.
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The minimum J is 482431. The velocities are: [48.0000 45.9157 44.8931 45.2043
46.3654 47.9227 49.6039 51.2581 53.8837 54.2438 51.9150 49.6501 48.3867 48.1550
48.7734 50.0000 51.0049 51.9828 53.0549 53.5255 52.4869 51.7542 51.2368 50.7831
50.0000].

The plot is given below:

0 5 10 15 20 25

time

44

46

48

50

52

54

56

100  k i

velocity v i

The following Matlab code solves this problem:

%% par t c
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mu = 10000;
B = zeros (n−1, n ) ;
for i = 1 : ( n−1)

B( i , i : i +1) = [ 1 −1];
end
D = [ sqrt (b)∗eye (n ) ; sqrt (mu)∗B ] ;
v = inv (D’∗D)∗A’∗ inv (A∗ inv (D’∗D)∗A’ ) ∗ y
o b j e c t i v e p a r t c = norm(D∗v , 2)ˆ2

% p l o t
f igure ; plot ( 1 : n , 100∗k ) ;
hold on ;
plot ( 1 : n , v ) ;
xlabel ( ’ time ’ ) ;
legend ( ’ 100\ t imes k i ’ , ’ v e l o c i t y v i ’ ) ;

(d) 2 points The additional term on the objective makes the velocities at each time
interval close to each other. In other words, it makes the velocity transition
smoother. This can either be noticed from the plots or from the expression,
which is the sum of squares of differences of velocities.
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5. But First, Let Me Take a Selfie

An image with n-pixel by n-pixels can be directly represented as a matrix X ∈ Rn×n.
Most image processing problems are usually converted and solved as matrix problems.
In this question, we will look deeper into an interesting topic about image reconstruc-
tion and deblurring using different filters (no, not instagram).

Given a two-dimensional image we can apply a image transformation process. In this
case, the Sliding-Window Spatial Filter method, is equivalent to 2D discrete convolu-
tion. More concretely, given a 2D filter kernel (matrix) W ∈ R(n−m+1)×(n−m+1), we
define the 2D convolution as the weighted summation of all image pixels in the sliding
window according to the weight kernel’s size W , i.e.

(fW (X))ij =
n−m+1∑
k=1

n−m+1∑
l=1

WklXi+k−1,j+l−1

where output image Y ≈ fW (X) ∈ Rm×m.

Additionally, like what we saw in the homework, it can be convenient to describe a
matrix by a vector x = vec(X) ∈ Rn2

. For example, given an array X ∈ Rn×n, X can
be conveniently vectorized by stacking all columns:

vec(X) =


x1
x2
...
xn


where xi ∈ Rn is the column vector of X, i.e. X =

[
x1, x2 . . . xn

]
. Similarly, we can

also represent output image Y by vector y = vec(Y ) ∈ Rm2
.

Therefore the 2D convolution transformation is equivalent as following multiplication
by a matrix D ∈ R(m2)×(n2).

vec(Y ) = Dvec(X)

Finally we get to the problem.

(a) Sharpening Spatial Filter and Image Reconstruction

One kind of simple filters is the Sharpening Spatial Filter, which calculates the
horizontal, vertical and diagonal pixel difference for each position in image. For
example, such a kernel W can look like:

W =

1 2 1
2 −12 2
1 2 1
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Given the above kernel as a spatial filter, we can write the 2D convolution trans-
formation process as vec(Y) = D vec(X) as described above, where D is found
as mentioned in the vectorization process.

We define the roughness of image array U as

R = ‖Dvec(U)‖2

This metric, R, is the sum of the squares of the 2D spatial differences for each
elements in the image array U with its neighbors. A small R value corresponds
to smoothly varying image U .

Now we come to the image reconstruction problem. Suppose some pixels are
randomly missing in original image, and given the incomplete image, our goal is
to interpolate these unknown pixels with the prior assumption that neighboring
pixels usually have similar values.

To define the problem more precisely, we partition the set of indices 1, . . . , n2 into
two sets: Iknown and Iunknown. Assume there are k known pixels in the image, i.e.
k values in a vector vknown ∈ Rk, and n2−k unknown pixels in a vector vunknown ∈
Rn2−k. Then we can describe the incomplete image as the linear combination of
two vectors using two matrices Zknown ∈ Rn2×k and Zunknown ∈ Rn2×(n2−k), i.e.

vec(X) = Zknownvknown + Zunknownvunknown

where each columns of Zknown and Zunknown is a unit vector mapping the en-
tries in v vector to corresponding position in vector vec(X). In fact, the matrix[
Zknown Zunknown

]
is a permutation matrix.

In the data file ImageReconstructionData.*, you will find an incomplete im-
age array incomplete_img and also problem data v_known and idx_known and
idx_unknown. v_known is a column vector for all known pixel values, that is,
the vector vknown as described above. idx_known is a column vector which maps
the corresponding known pixel value in the vector vknown to the correct posi-
tion in the vector of incomplete image vec(incomplete_img). In other words,
the ith known value in the vector v_known is actually located at the position
idx_known(i) in the incomplete image vector vec(incomplete_img) i.e. let’s de-
note vector z = vec(incomplete_img)

v_known(i) = z(idx_known(i))

Similarly, idx_unknown is a column vector which maps the corresponding un-
known pixel value in the vector vunknown to the correct position in the vector of
incomplete image vec(incomplete_img); which also means that the value at the
position idx_unknown(i) in the incomplete image vector is unknown.

Please note that you need to firstly construct matrix Zknown and Zunknown from
vector idx_known and idx_unknown as described above. Then try to find the

23



unknown vector vunknown to reconstruct the original complete image by minimizing
the image roughness measures R. Please give the value of roughness measure R
for the reconstructed image.

(b) In the data file ImageReconstructionData.m, there is also the original image
array original_img. Compare the reconstructed image and the original image.
Hand in the complete source code and the images plots.

For matlab users you might fine following hints are useful.

You can use "imagesc()" function to show the figure.

In order to display grey image, add command "colormap gray" before "imagesc()"

If the image array data is "double", you might want to convert to "uint8"

to show right figure

For python users you can use the Images module in the PIL toolbox i.e.

from PIL import Image

import numpy as np

imgtest=img.fromarray(YourImgMatrix*255)

where YourMatrix is a matrix of pixel values (note the 255 to scale the pixel value
from 0-1 to 0-255 (8bit))

For Julia users you need to install the Images package

Pkg.add("Images")

And image viewing is just

img=Gray.(YourImgMatrix)

For more info see

http://juliaimages.github.io/latest/arrays_colors.html

(c) Smoothing Spatial Filter and Image Deblurring

Another simple filter W is the Smoothing Spatial Filter, which calculate the
weighted average of pixel values in the sliding window. For example the smoothing
kernel is:

W =
1

16
×

1 2 1
2 4 2
1 2 1


Note: you are not going to use above filter example to do more processing, it is
just an example. In the following question, you will be required to work out a
new spatial kernel W given a series of images.

Suppose we are taking pictures using a camera but carelessly get a bunch of
blurry images Y . In order to deblur these images, we need the blurring model of
the camera. To simplify, we assume the blurring process can be approximately
described by 2D convolution and a constant offset, i.e.

φW,b(X
(k))ij = fW (X(k))ij + b
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where fW is the 2D convolution transformation described above, and φW,b(X) is
the predicted blurry image. b ∈ R is the constant offset value.

Given the original image series X(1), · · · , X(N) ∈ Rn×n, and corresponding blurry
images Y (1), · · · , Y (N) ∈ Rm×m, you need to estimate the model parameters W
and b by minimizing the RMS fitting error.

J =

√√√√ 1

N

N∑
k=1

‖Y (k) − φW,b(X(k))‖2F

where the squared Frobenius norm of a matrix M ∈ Rm×m is given by

‖M‖2F =
m∑
i=1

m∑
j=1

M2
ij

Explain how to choose the blurring model parameters W ∈ R(n−m+1)×(n−m+1) and
b ∈ R in order to minimize the RMS fitting error above.

(d) Apply your method to the data given in ImageDeblurData.m. Now each input
image is a matrix X ∈ R28×28, each camera image is a matrix Y ∈ R24×24, and
the filter you wish to estimate has weight matrix A ∈ R5×5 and scalar bias b ∈ R.
Use X and Y in the ImageDeblurData.m file.

In each of the data matrices, each column is a different image. The images
have been reshaped from matrices to column vectors by reshaping the matrices
in column-major order. That is, we represent every input image X(i) by vector
x(i) = vec(X(i)) ∈ Rn2

, which is the ith columns in matrix X. Similarly, we
represent every output image Y (i) by vector y(i) = vec(Y (i)) ∈ Rm2

, which is the
ith columns in matrix Y.

Thus, X is a matrix in R784×100, so there are 100 input images of 784 pixels each,
and Y is a matrix in R576×100 with the corresponding 100 camera images of 576
pixels each. Report to four decimal places your estimates of the parameters W
and b, and the corresponding value of J .

(e) Given a image Ŷ which is blurred under the same camera setting, can you always
find the deblurred image X̂ such that φW,b(X̂) = Ŷ by using the above model?
Justify your answer. Please feel free to use Matlab/Phython to compute or check
your condition. Please also submit your code.

Solution.

(a) 4 points

Firstly we can express our roughness measure directly in terms of the vector of
known values vector vknown and unknown values vector vunknown as

R = ‖D(Zknownvknown + Zunknownvunknown)‖2

= ‖DZknownvknown +DZunknownvunknown‖2
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Defining
A = DZunknown b = −DZknownvknown

Provided that A is skinny and full rank, the least-square solution is

vunknown = (ATA)−1AT b

In order to construct matrix D, we can use the kernel W to shift across each rows
and columns on the image array X as a sliding window, and then vertorize the
image array X and corresponding coefficient matrix with nonzero weights value
only located within the sliding window.

Repeat the above process and stack all coefficient vector to get matrix D. Please
refer to following code to see how to implement this.

(b) 4 points
The following code solves this problem

clear all; close all; clc

%% load data from data file

ImageReconstructionData;

%% construct Z_known and Z_unknown

[m, n] = size(incomplete_img); % compute the number of rows and columns for

image X

num = m*n; % compute the total number of pixels in image X

num_known = length(idx_known);

num_unknown = length(idx_unknown);

Z_known = zeros(num, num_known);

Z_unknown = zeros(num, num_unknown);

for i = 1:num_known

Z_known(idx_known(i), i) = 1;

end

for j = 1:num_unknown

Z_unknown(idx_unknown(j), j) = 1;

end

%% construct matrix D

W = [1, 2, 1;

2, -12, 2;

1, 2, 1];

D = zeros((m-2)*(n-2), m*n);

ctr = 1;

for j = 1:(n-2)

for i = 1:(m-2)

tmp = zeros(m, n);

tmp(i:(i+2), j:(j+2)) = W;

tmp = tmp(:);
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D(ctr, :) = tmp’;

assert(ctr == i+(j-1)*(m-2));

ctr = ctr + 1;

end

end

%% solve least square problem for unknown values

A = D * Z_unknown;

assert(size(A,2) == rank(A)); % check if A is skinny and full-rank

b = - D * Z_known * v_known;

v_unknown = pinv(A) * b;

%% display original image and incompletement image

figure(1);

colormap gray;

imagesc(uint8(original_img));

imwrite(uint8(original_img), ’original_img.png’);

title(’original image’);

incomplete_img_vector = Z_known * v_known + Z_unknown * zeros(num_unknown,1);

incomplete_img = reshape(incomplete_img_vector, [m, n]);

figure(2);

colormap gray

imagesc(uint8(incomplete_img));

imwrite(uint8(incomplete_img), ’incomplete_img.png’);

title(’incomplete image’);

%% display reconstructed image

reconstructed_img_vector = Z_known * v_known + Z_unknown * v_unknown;

reconstructed_img = reshape(reconstructed_img_vector, [m, n]);

figure;

colormap gray

imagesc(uint8(reconstructed_img));

imwrite(uint8(reconstructed_img), ’reconstructed_img.png’);

title(’reconstructed image’);

%% compute roughness of reconstructed image

R = norm(D * reconstructed_img_vector)^2

As a result, the roughness measure of reconstructed image is

R = 2.0041e+8

Display the original image and reconstructed image here.
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reconstructed image
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(c) 5 points

Although in our problem data file, n = 28 and m = 24, here we consider n = 5
and m = 3 for illustrative purposes. The results of this section can be generalized
to any value of n and m.

One straightforward way to solve this problem is to regard weight kernel W
and constant scalar b as unknown vector. Then work with original image series
X(1), · · · , X(N) ∈ Rn×n given in the problem statement to figure out coefficient
matrix A. In the other hand, reshape the blurry images Y (1), · · · , Y (N) ∈ Rm×m

into one vector shown in the least square problem.

We can rewrite the expression for Yij given in the problem statement as

Yij =
[
Xij Xi+1,j Xi+2,j Xi,j+1 . . . Xi+2,j+2 1

]


W11

W21

W31

W21
...

W33

b
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We can concatenate the pixels of all of our camera images as a column vector.

Y
(1)
11

Y
(1)
21
...

Y
(1)
33

Y
(2)
11

Y
(2)
21
...


=



X
(1)
11 X

(1)
21 X

(1)
31 X

(1)
12 . . . X

(1)
33 1

X
(1)
21 X

(1)
31 X

(1)
41 X

(1)
22 . . . X

(1)
43 1

...
. . .

...

X
(1)
33 X

(1)
43 X

(1)
53 X

(1)
34 . . . X

(1)
55 1

X
(2)
11 X

(2)
21 X

(2)
31 X

(2)
12 . . . X

(2)
33 1

X
(2)
21 X

(2)
31 X

(2)
41 X

(2)
22 . . . X

(2)
43 1

...
. . .

...





W11

W12

W13

W21
...

W33

b


We now use least squares to find W and b.

Note that we have effectively taken each input image X(k) and generated 9 images
in R3×3. Likewise, we have split each output camera image Y (k) into 9 images
in R (i.e., each new camera image has only one pixel). This is equivalent to the
original problem from the filter’s point of view.

(d) 5 points

The estimated filter parameters are

W =


0 0.0165 0.0205 0.0154 0.0026

0.0138 0.0572 0.0974 0.0575 0.0127
0.0231 0.1004 0.1598 0.1021 0.0217
0.0126 0.0591 0.1030 0.0547 0.0157
0.0035 0.0120 0.0212 0.0149 0.0015


b = 0.5001

The RMS error J is 1.2019.
The following code solves this problem

clear all; close all; clc

%% load data from data file

ImageDeblurData;

%% construct Y vector

Y_vec = Y(:);

assert(length(Y_vec) == m^2 * N);

assert(n-m+1 == 5)

%% construct coefficient matrix

C = zeros(m^2 * N, (n-m+1)^2);

ctr = 1;

for num = 1:N

x_img = X(:, num);

x_img = reshape(x_img, n, n);

for j = 1:m
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for i = 1:m

coef = x_img(i:i+n-m, j:j+n-m);

C(ctr, :) = coef(:)’;

assert(ctr == i + (j-1)*m + (num-1)*m^2);

ctr = ctr + 1;

end

end

end

%% solve least square problem for unknown values

A = [C, ones(m^2 * N, 1)];

assert(size(A,2) == rank(A)); % check if A is skinny and full-rank

W = pinv(A) * Y_vec;

%% display filter kernel W and constant b

b = W(end)

W = reshape(W(1:end-1), n-m+1, n-m+1)

%% compute J value

J = sqrt(norm( Y_vec - A*[W(:);b] )^2 / N)

(e) 2 points

Recall from last question that

M̂X̂ + b1 = Ŷ

We can rewrite this as
M̂X̂ = Ŷ − b1

Note that since M̂ is strictly fat, and a quick computation check shows that it
is also full-rank. We know that M̂ is onto. This means that for any Ŷ there
always exists some X̂ that will satisfy this equation. But since the dimension of
the nullspace of M̂ is nonzero, the solution of above equation is not unique.

Therefore, given a image Ŷ which is blurred under the same camera setting, we
can always find some images X̂ such that φW,b(X̂) = Ŷ by using the above model.
The following code construct matrix M and check full-rank condition

%% construct matrix M and check if M is full-rank

M = zeros(m^2, n^2);

ctr = 1;

for j = 1:(n-4)

for i = 1:(n-4)

tmp = zeros(n, n);

tmp(i:(i+4), j:(j+4)) = W;

tmp = tmp(:);

M(ctr, :) = tmp’;

assert(ctr == i+(j-1)*(n-4));

ctr = ctr + 1;

end

end

assert(min(size(M)) == rank(M))
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