Lecture 20
Some parting thoughts . . .

• linear algebra

• levels of understanding

• what’s next?
Linear algebra

• comes up in *many* practical contexts (EE, ME, CE, AA, OR, Econ, . . .)

• nowadays is readily *done*
 cf. 10 yrs ago (when it was mostly *talked about*)

• Matlab or equiv for fooling around

• real codes (*e.g.*, LAPACK) widely available

• current level of linear algebra technology:
 – 500 – 1000 vbles: easy with general purpose codes
 – much more possible with special structure, special codes (*e.g.*, sparse, convolution, banded, . . .)

Some parting thoughts . . .
Levels of understanding

Simple, intuitive view:

- 17 vars, 17 eqns: usually has unique solution
- 80 vars, 60 eqns: 20 extra degrees of freedom

Platonic view:

- singular, rank, range, nullspace, Jordan form, controllability
- everything is precise & unambiguous
- gives insight & deeper understanding
- sometimes misleading in practice
Quantitative view:

- based on ideas like least-squares, SVD
- gives numerical measures for ideas like singularity, rank, etc.
- interpretation depends on (practical) context
- very useful in practice

Some parting thoughts . . .
• must have understanding at one level before moving to next

• **never forget** which level you are operating in
What’s next?

- EE363 — linear dynamical systems (Win 08-09)
- EE364a — convex optimization I (Spr 08-09)

(plus lots of other EE, CS, ICME, MS&E, Stat, ME, AA courses on signal processing, control, graphics & vision, adaptive systems, machine learning, computational geometry, numerical linear algebra, . . .)