Lecture 15
Symmetric matrices, quadratic forms, matrix norm, and SVD

• eigenvectors of symmetric matrices

• quadratic forms

• inequalities for quadratic forms

• positive semidefinite matrices

• norm of a matrix

• singular value decomposition
suppose $A \in \mathbb{R}^{n \times n}$ is symmetric, \textit{i.e.}, $A = A^T$

fact: the eigenvalues of A are real

to see this, suppose $Av = \lambda v$, $v \neq 0$, $v \in \mathbb{C}^n$

then

\[
\overline{v}^T Av = \overline{v}^T (Av) = \overline{\lambda} v^T v = \lambda \sum_{i=1}^{n} |v_i|^2
\]

but also

\[
\overline{v}^T Av = (Av)^T v = (\overline{\lambda} v)^T v = \overline{\lambda} \sum_{i=1}^{n} |v_i|^2
\]

so we have $\lambda = \overline{\lambda}$, \textit{i.e.}, $\lambda \in \mathbb{R}$ (hence, can assume $v \in \mathbb{R}^n$)
Eigenvectors of symmetric matrices

fact: there is a set of orthonormal eigenvectors of A, i.e., q_1, \ldots, q_n s.t.

$$Aq_i = \lambda_i q_i, \quad q_i^T q_j = \delta_{ij}$$

in matrix form: there is an orthogonal Q s.t.

$$Q^{-1}AQ = Q^T AQ = \Lambda$$

hence we can express A as

$$A = Q\Lambda Q^T = \sum_{i=1}^{n} \lambda_i q_i q_i^T$$

in particular, q_i are both left and right eigenvectors
Interpretations

\[A = Q \Lambda Q^T \]

linear mapping \(y = Ax \) can be decomposed as

- resolve into \(q_i \) coordinates
- scale coordinates by \(\lambda_i \)
- reconstitute with basis \(q_i \)
or, geometrically,

- rotate by Q^T

- diagonal real scale ('dilation') by Λ

- rotate back by Q

decomposition

$$A = \sum_{i=1}^{n} \lambda_i q_i q_i^T$$

expresses A as linear combination of 1-dimensional projections
example:

\[
A = \begin{bmatrix}
-1/2 & 3/2 \\
3/2 & -1/2 \\
\end{bmatrix}
\]

\[
= \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right) \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right)^T
\]
proof (case of λ_i distinct)

since λ_i distinct, can find v_1, \ldots, v_n, a set of linearly independent eigenvectors of A:

$$Av_i = \lambda_i v_i, \quad \|v_i\| = 1$$

then we have

$$v_i^T (Av_j) = \lambda_j v_i^T v_j = (Av_i)^T v_j = \lambda_i v_i^T v_j$$

so $(\lambda_i - \lambda_j)v_i^T v_j = 0$

for $i \neq j$, $\lambda_i \neq \lambda_j$, hence $v_i^T v_j = 0$

- in this case we can say: eigenvectors are orthogonal
- in general case (λ_i not distinct) we must say: eigenvectors can be chosen to be orthogonal
Example: RC circuit

\[v_1 - c_1 \]
\[\ldots \]
\[v_n - c_n \]
\[i_1 \]
\[i_n \]

resistive circuit

\[c_k \dot{v}_k = -i_k, \quad i = Gv \]

\[G = G^T \in \mathbb{R}^{n \times n} \] is conductance matrix of resistive circuit

thus \(\dot{v} = -C^{-1}Gv \) where \(C = \text{diag}(c_1, \ldots, c_n) \)

note \(-C^{-1}G\) is not symmetric

Symmetric matrices, quadratic forms, matrix norm, and SVD
use state $x_i = \sqrt{c_i} v_i$, so

$$\dot{x} = C^{1/2} \dot{v} = -C^{-1/2} G C^{-1/2} x$$

where $C^{1/2} = \text{diag}(\sqrt{c_1}, \ldots, \sqrt{c_n})$

we conclude:

- eigenvalues $\lambda_1, \ldots, \lambda_n$ of $-C^{-1/2} G C^{-1/2}$ (hence, $-C^{-1} G$) are real
- eigenvectors q_i (in x_i coordinates) can be chosen orthogonal
- eigenvectors in voltage coordinates, $s_i = C^{-1/2} q_i$, satisfy

$$-C^{-1} G s_i = \lambda_i s_i, \quad s_i^T C s_i = \delta_{ij}$$
Quadratic forms

A function \(f : \mathbb{R}^n \to \mathbb{R} \) of the form

\[
f(x) = x^T Ax = \sum_{i,j=1}^{n} A_{ij} x_i x_j
\]

is called a *quadratic form*

In a quadratic form we may as well assume \(A = A^T \) since

\[
x^T Ax = x^T (\frac{A + A^T}{2}) x
\]

\((A + A^T)/2\) is called the *symmetric part* of \(A \)

Uniqueness: If \(x^T Ax = x^T Bx \) for all \(x \in \mathbb{R}^n \) and \(A = A^T, B = B^T \), then \(A = B \)
Examples

• $\|Bx\|^2 = x^T B^T Bx$

• $\sum_{i=1}^{n-1} (x_{i+1} - x_i)^2$

• $\|Fx\|^2 - \|Gx\|^2$

sets defined by quadratic forms:

• $\{ x \mid f(x) = a \}$ is called a quadratic surface

• $\{ x \mid f(x) \leq a \}$ is called a quadratic region
Inequalities for quadratic forms

suppose $A = A^T$, $A = QΛQ^T$ with eigenvalues sorted so $λ_1 ≥ · · · ≥ λ_n$

$$x^T Ax = x^T QΛQ^T x$$
$$= (Q^T x)^T Λ(Q^T x)$$
$$= \sum_{i=1}^{n} λ_i (q_i^T x)^2$$
$$≤ \lambda_1 \sum_{i=1}^{n} (q_i^T x)^2$$
$$= \lambda_1 \|x\|^2$$

i.e., we have $x^T Ax ≤ λ_1 x^T x$
similar argument shows \(x^T A x \geq \lambda_n \| x \|^2 \), so we have

\[
\lambda_n x^T x \leq x^T A x \leq \lambda_1 x^T x
\]

sometimes \(\lambda_1 \) is called \(\lambda_{\text{max}} \), \(\lambda_n \) is called \(\lambda_{\text{min}} \)

note also that

\[
q_1^T A q_1 = \lambda_1 \| q_1 \|^2, \quad q_n^T A q_n = \lambda_n \| q_n \|^2,
\]

so the inequalities are tight
Positive semidefinite and positive definite matrices

suppose \(A = A^T \in \mathbb{R}^{n \times n} \)

we say \(A \) is positive semidefinite if \(x^T A x \geq 0 \) for all \(x \)

- denoted \(A \geq 0 \) (and sometimes \(A \succeq 0 \))
- \(A \geq 0 \) if and only if \(\lambda_{\min}(A) \geq 0 \), i.e., all eigenvalues are nonnegative
- not the same as \(A_{ij} \geq 0 \) for all \(i, j \)

we say \(A \) is positive definite if \(x^T A x > 0 \) for all \(x \neq 0 \)

- denoted \(A > 0 \)
- \(A > 0 \) if and only if \(\lambda_{\min}(A) > 0 \), i.e., all eigenvalues are positive
Matrix inequalities

- we say A is negative semidefinite if $-A \geq 0$

- we say A is negative definite if $-A > 0$

- otherwise, we say A is indefinite

Matrix inequality: if $B = B^T \in \mathbb{R}^n$ we say $A \geq B$ if $A - B \geq 0$, $A < B$ if $B - A > 0$, etc.

For example:

- $A \geq 0$ means A is positive semidefinite

- $A > B$ means $x^T Ax > x^T Bx$ for all $x \neq 0$
many properties that you’d guess hold actually do, \textit{e.g.},

- if $A \geq B$ and $C \geq D$, then $A + C \geq B + D$
- if $B \leq 0$ then $A + B \leq A$
- if $A \geq 0$ and $\alpha \geq 0$, then $\alpha A \geq 0$
- $A^2 \geq 0$
- if $A > 0$, then $A^{-1} > 0$

matrix inequality is only a \textit{partial order}: we can have

$$A \not\geq B, \quad B \not\geq A$$

(such matrices are called \textit{incomparable})
Ellipsoids

If $A = A^T > 0$, the set

$$\mathcal{E} = \{ x \mid x^T A x \leq 1 \}$$

is an ellipsoid in \mathbb{R}^n, centered at 0.
semi-axes are given by \(s_i = \lambda_i^{-1/2} q_i \), i.e.:

- eigenvectors determine directions of semi-axes
- eigenvalues determine lengths of semi-axes

note:

- in direction \(q_1 \), \(x^T A x \) is large, hence ellipsoid is thin in direction \(q_1 \)
- in direction \(q_n \), \(x^T A x \) is small, hence ellipsoid is fat in direction \(q_n \)
- \(\sqrt{\lambda_{\text{max}}/\lambda_{\text{min}}} \) gives maximum eccentricity

if \(\tilde{\mathcal{E}} = \{ x \mid x^T B x \leq 1 \} \), where \(B > 0 \), then \(\mathcal{E} \subseteq \tilde{\mathcal{E}} \iff A \geq B \)
Gain of a matrix in a direction

suppose $A \in \mathbb{R}^{m \times n}$ (not necessarily square or symmetric)

for $x \in \mathbb{R}^n$, $\|Ax\|/\|x\|$ gives the amplification factor or gain of A in the direction x

obviously, gain varies with direction of input x

questions:

• what is maximum gain of A
 (and corresponding maximum gain direction)?

• what is minimum gain of A
 (and corresponding minimum gain direction)?

• how does gain of A vary with direction?
Matrix norm

the maximum gain

$$\max_{x \neq 0} \frac{\|Ax\|}{\|x\|}$$

is called the *matrix norm* or *spectral norm* of A and is denoted $\|A\|$.

$$\max_{x \neq 0} \frac{\|Ax\|^2}{\|x\|^2} = \max_{x \neq 0} \frac{x^T A^T A x}{\|x\|^2} = \lambda_{\text{max}}(A^T A)$$

so we have $\|A\| = \sqrt{\lambda_{\text{max}}(A^T A)}$

similarly the minimum gain is given by

$$\min_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \sqrt{\lambda_{\text{min}}(A^T A)}$$
note that

- $A^T A \in \mathbb{R}^{n \times n}$ is symmetric and $A^T A \geq 0$ so $\lambda_{\text{min}}, \lambda_{\text{max}} \geq 0$

- ‘max gain’ input direction is $x = q_1$, eigenvector of $A^T A$ associated with λ_{max}

- ‘min gain’ input direction is $x = q_n$, eigenvector of $A^T A$ associated with λ_{min}
example: \[A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \]

\[A^T A = \begin{bmatrix} 35 & 44 \\ 44 & 56 \end{bmatrix} = \begin{bmatrix} 0.620 & 0.785 \\ 0.785 & -0.620 \end{bmatrix} \begin{bmatrix} 90.7 & 0 \\ 0 & 0.265 \end{bmatrix} \begin{bmatrix} 0.620 & 0.785 \\ 0.785 & -0.620 \end{bmatrix}^T \]

then \[\|A\| = \sqrt{\lambda_{\text{max}}(A^T A)} = 9.53: \]

\[\left\| \begin{bmatrix} 0.620 \\ 0.785 \end{bmatrix} \right\| = 1, \quad \left\| A \begin{bmatrix} 0.620 \\ 0.785 \end{bmatrix} \right\| = \left\| \begin{bmatrix} 2.18 \\ 4.99 \\ 7.78 \end{bmatrix} \right\| = 9.53 \]
min gain is \(\sqrt{\lambda_{\text{min}}(A^T A)} = 0.514: \)

\[
\| \begin{bmatrix} 0.785 \\ -0.620 \end{bmatrix} \| = 1, \quad \| A \begin{bmatrix} 0.785 \\ -0.620 \end{bmatrix} \| = \| \begin{bmatrix} 0.46 \\ 0.14 \\ -0.18 \end{bmatrix} \| = 0.514
\]

for all \(x \neq 0 \), we have

\[
0.514 \leq \frac{\|Ax\|}{\|x\|} \leq 9.53
\]
Properties of matrix norm

- consistent with vector norm: matrix norm of $a \in \mathbb{R}^{n \times 1}$ is
 $$\sqrt{\lambda_{\text{max}}(a^T a)} = \sqrt{a^T a}$$
- for any x, $\|Ax\| \leq \|A\|\|x\|$
- scaling: $\|aA\| = |a|\|A\|$
- triangle inequality: $\|A + B\| \leq \|A\| + \|B\|$
- definiteness: $\|A\| = 0 \iff A = 0$
- norm of product: $\|AB\| \leq \|A\|\|B\|$
Singular value decomposition

more complete picture of gain properties of A given by singular value decomposition (SVD) of A:

$$A = UΣV^T$$

where

- $A \in \mathbb{R}^{m \times n}$, $\text{Rank}(A) = r$
- $U \in \mathbb{R}^{m \times r}$, $U^TU = I$
- $V \in \mathbb{R}^{n \times r}$, $V^TV = I$
- $Σ = \text{diag}(σ_1, \ldots, σ_r)$, where $σ_1 ≥ \cdots ≥ σ_r > 0$
with \(U = [u_1 \cdots u_r], \ V = [v_1 \cdots v_r], \)

\[
A = U \Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T
\]

- \(\sigma_i \) are the (nonzero) singular values of \(A \)
- \(v_i \) are the right or input singular vectors of \(A \)
- \(u_i \) are the left or output singular vectors of \(A \)
\[A^T A = (U \Sigma V^T)^T (U \Sigma V^T) = V \Sigma^2 V^T \]

hence:

• \(v_i \) are eigenvectors of \(A^T A \) (corresponding to nonzero eigenvalues)

• \(\sigma_i = \sqrt{\lambda_i(A^T A)} \) (and \(\lambda_i(A^T A) = 0 \) for \(i > r \))

• \(\|A\| = \sigma_1 \)
similarly,

\[
AA^T = (U \Sigma V^T)(U \Sigma V^T)^T = U \Sigma^2 U^T
\]

hence:

- \(u_i \) are eigenvectors of \(AA^T \) (corresponding to nonzero eigenvalues)
- \(\sigma_i = \sqrt{\lambda_i(AA^T)} \) (and \(\lambda_i(AA^T) = 0 \) for \(i > r \))
- \(u_1, \ldots u_r \) are orthonormal basis for \(\text{range}(A) \)
- \(v_1, \ldots v_r \) are orthonormal basis for \(\mathcal{N}(A)^\perp \)
Interpretations

\[A = U \Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T \]

linear mapping \(y = Ax \) can be decomposed as

- compute coefficients of \(x \) along input directions \(v_1, \ldots, v_r \)
- scale coefficients by \(\sigma_i \)
- reconstitute along output directions \(u_1, \ldots, u_r \)

difference with eigenvalue decomposition for symmetric \(A \): input and output directions are different
• v_1 is most sensitive (highest gain) input direction

• u_1 is highest gain output direction

• $Av_1 = \sigma_1 u_1$
SVD gives clearer picture of gain as function of input/output directions

Example: consider \(A \in \mathbb{R}^{4 \times 4} \) with \(\Sigma = \text{diag}(10, 7, 0.1, 0.05) \)

- input components along directions \(v_1 \) and \(v_2 \) are amplified (by about 10) and come out mostly along plane spanned by \(u_1, u_2 \)

- input components along directions \(v_3 \) and \(v_4 \) are attenuated (by about 10)

- \(\|Ax\|/\|x\| \) can range between 10 and 0.05

- \(A \) is nonsingular

- for some applications you might say \(A \) is *effectively* rank 2
example: $A \in \mathbb{R}^{2 \times 2}$, with $\sigma_1 = 1$, $\sigma_2 = 0.5$

- resolve x along v_1, v_2: $v_1^T x = 0.5$, $v_2^T x = 0.6$, i.e., $x = 0.5v_1 + 0.6v_2$

- now form $Ax = (v_1^T x)\sigma_1 u_1 + (v_2^T x)\sigma_2 u_2 = (0.5)(1)u_1 + (0.6)(0.5)u_2$