Lecture 1 Matrix Terminology and Notation

- matrix dimensions
- column and row vectors
- special matrices and vectors

Matrix dimensions

a *matrix* is a rectangular array of numbers between brackets **examples:**

$$A = \begin{bmatrix} 0 & 1 & -2.3 & 0.1 \\ 1.3 & 4 & -0.1 & 0 \\ 4.1 & -1 & 0 & 1.7 \end{bmatrix}, \qquad B = \begin{bmatrix} 3 & -3 \\ 12 & 0 \end{bmatrix}$$

dimension (or size) always given as (numbers of) rows \times columns

- A is a 3×4 matrix, B is 2×2
- the matrix A has four columns; B has two rows

 $m \times n$ matrix is called square if m = n, fat if m < n, skinny if m > n

Matrix coefficients

coefficients (or entries) of a matrix are the values in the array coefficients are referred to using double subscripts for row, column A_{ij} is the value in the *i*th row, *j* column of *A*; also called *i*, *j* entry of *A i* is the row index of A_{ij} ; *j* is the column index of A_{ij}

(here, A is a matrix; A_{ij} is a number)

example: for
$$A = \begin{bmatrix} 0 & 1 & -2.3 & 0.1 \\ 1.3 & 4 & -0.1 & 0 \\ 4.1 & -1 & 0 & 1.7 \end{bmatrix}$$
, we have:

 $A_{23} = -0.1$, $A_{22} = 4$, but A_{41} is meaningless

the row index of the entry with value -2.3 is 1; its column index is 3

Column and row vectors

- a matrix with one column, *i.e.*, size $n \times 1$, is called a (column) vector
- a matrix with one row, *i.e.*, size $1 \times n$, is called a *row vector*

'vector' alone usually refers to column vector

we give only one index for column & row vectors and call entries *components*

$$v = \begin{bmatrix} 1\\ -2\\ 3.3\\ 0.3 \end{bmatrix} \qquad w = \begin{bmatrix} -2.1 & -3 & 0 \end{bmatrix}$$

• v is a 4-vector (or 4×1 matrix); its third component is $v_3 = 3.3$

• w is a row vector (or 1×3 matrix); its third component is $w_3 = 0$

Matrix equality

A = B means:

- A and B have the same size
- the corresponding entries are equal

for example,

•
$$\begin{bmatrix} -2\\ 3.3 \end{bmatrix} \neq \begin{bmatrix} -2\\ -2 \end{bmatrix}$$
 since the dimensions don't agree
• $\begin{bmatrix} -2\\ 3.3 \end{bmatrix} \neq \begin{bmatrix} -2\\ 3.1 \end{bmatrix}$ since the 2nd components don't agree

Zero and identity matrices

 $0_{m \times n}$ denotes the $m \times n$ **zero matrix**, with all entries zero I_n denotes the $n \times n$ **identity matrix**, with

$$I_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

$$0_{2\times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $0_{n \times 1}$ called zero vector; $0_{1 \times n}$ called zero row vector

convention: usually the subscripts are dropped, so you have to figure out the size of 0 or I from context

Unit vectors

 e_i denotes the *i*th **unit vector**: its *i*th component is one, all others zero the three unit 3-vectors are:

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \qquad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

as usual, you have to figure the size out from context

unit vectors are the columns of the identity matrix I

some authors use 1 (or e) to denote a vector with all entries one, sometimes called the **ones vector**

the ones vector of dimension 2 is $\mathbf{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$