Lecture 13
Linear dynamical systems with inputs & outputs

• inputs & outputs: interpretations
• transfer matrix
• impulse and step matrices
• examples
Recall continuous-time time-invariant LDS has form

\[\dot{x} = Ax + Bu, \quad y = Cx + Du \]

- \(Ax \) is called the drift term (of \(\dot{x} \))
- \(Bu \) is called the input term (of \(\dot{x} \))
Interpretations

write \(\dot{x} = Ax + b_1 u_1 + \cdots + b_m u_m \), where \(B = [b_1 \cdots b_m] \)

- state derivative is sum of autonomous term \((Ax)\) and one term per input \((b_i u_i)\)
- each input \(u_i \) gives another degree of freedom for \(\dot{x} \) (assuming columns of \(B \) independent)

write \(\dot{x} = Ax + Bu \) as \(\dot{x}_i = \tilde{a}_i^T x + \tilde{b}_i^T u \), where \(\tilde{a}_i^T, \tilde{b}_i^T \) are the rows of \(A, B \)

- \(i \)th state derivative is linear function of state \(x \) and input \(u \)
Block diagram

\[u(t) \xrightarrow{B} \dot{x}(t) \xrightarrow{1/s} x(t) \xrightarrow{C} y(t) \]

- \(A_{ij} \) is gain factor from state \(x_j \) into integrator \(i \)
- \(B_{ij} \) is gain factor from input \(u_j \) into integrator \(i \)
- \(C_{ij} \) is gain factor from state \(x_j \) into output \(y_i \)
- \(D_{ij} \) is gain factor from input \(u_j \) into output \(y_i \)
interesting when there is structure, \(e.g., \) with \(x_1 \in \mathbb{R}^{n_1}, x_2 \in \mathbb{R}^{n_2}: \)

\[
\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ 0 \end{bmatrix} u, \quad y = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
\]

- \(x_2 \) is not affected by input \(u \), \(i.e., \) \(x_2 \) propagates autonomously
- \(x_2 \) affects \(y \) directly and through \(x_1 \)
Transfer matrix

take Laplace transform of $\dot{x} = Ax + Bu$:

$$sX(s) - x(0) = AX(s) + BU(s)$$

hence

$$X(s) = (sI - A)^{-1}x(0) + (sI - A)^{-1}BU(s)$$

so

$$x(t) = e^{tA}x(0) + \int_0^t e^{(t-\tau)A}Bu(\tau)\,d\tau$$

• $e^{tA}x(0)$ is the unforced or autonomous response

• $e^{tA}B$ is called the input-to-state impulse matrix

• $(sI - A)^{-1}B$ is called the input-to-state transfer matrix or transfer function
with \(y = Cx + Du \) we have:

\[
Y(s) = C(sI - A)^{-1}x(0) + (C(sI - A)^{-1}B + D)U(s)
\]

so

\[
y(t) = Ce^{tA}x(0) + \int_0^t Ce^{(t-\tau)A} Bu(\tau) \, d\tau + Du(t)
\]

- output term \(Ce^{tA}x(0) \) due to initial condition
- \(H(s) = C(sI - A)^{-1}B + D \) is called the transfer function or transfer matrix
- \(h(t) = Ce^{tA}B + D\delta(t) \) is called the impulse matrix or impulse response (\(\delta \) is the Dirac delta function)
with zero initial condition we have:

\[Y(s) = H(s)U(s), \quad y = h \ast u \]

where \(\ast \) is convolution (of matrix valued functions)

interpretation:

- \(H_{ij} \) is transfer function from input \(u_j \) to output \(y_i \)
Impulse matrix

impulse matrix \(h(t) = C e^{tA} B + D \delta(t) \)

with \(x(0) = 0, \ y = h \ast u \), i.e.,

\[
y_i(t) = \sum_{j=1}^{m} \int_{0}^{t} h_{ij}(t - \tau) u_j(\tau) \, d\tau
\]

interpretations:

- \(h_{ij}(t) \) is impulse response from \(j \)th input to \(i \)th output
- \(h_{ij}(t) \) gives \(y_i \) when \(u(t) = e_j \delta \)
- \(h_{ij}(\tau) \) shows how dependent output \(i \) is, on what input \(j \) was, \(\tau \) seconds ago
- \(i \) indexes output; \(j \) indexes input; \(\tau \) indexes time lag
Step matrix

the *step matrix* or *step response matrix* is given by

\[s(t) = \int_0^t h(\tau) \, d\tau \]

interpretations:

- \(s_{ij}(t) \) is step response from \(j \)th input to \(i \)th output
- \(s_{ij}(t) \) gives \(y_i \) when \(u = e_j \) for \(t \geq 0 \)

for invertible \(A \), we have

\[s(t) = CA^{-1} \left(e^{tA} - I \right) B + D \]
Example 1

- unit masses, springs, dampers
- u_1 is tension between 1st & 2nd masses
- u_2 is tension between 2nd & 3rd masses
- $y \in \mathbb{R}^3$ is displacement of masses 1,2,3
- $x = \begin{bmatrix} y \\ \dot{y} \end{bmatrix}$
system is:

\[
\dot{x} = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
-2 & 1 & 0 & -2 & 1 & 0 \\
1 & -2 & 1 & 1 & -2 & 1 \\
0 & 1 & -2 & 0 & 1 & -2 \\
\end{bmatrix} x + \begin{bmatrix}
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
\end{bmatrix} \begin{bmatrix}
u_1 \\
u_2 \\
\end{bmatrix}
\]

eigenvalues of A are

\[-1.71 \pm j0.71, \quad -1.00 \pm j1.00, \quad -0.29 \pm j0.71\]
impulse matrix:

roughly speaking:

- impulse at u_1 affects third mass less than other two
- impulse at u_2 affects first mass later than other two
Example 2

interconnect circuit:

- $u(t) \in \mathbb{R}$ is input (drive) voltage
- x_i is voltage across C_i
- output is state: $y = x$
- unit resistors, unit capacitors
- step response matrix shows delay to each node
system is

\[
\dot{x} = \begin{bmatrix}
-3 & 1 & 1 & 0 \\
1 & -1 & 0 & 0 \\
1 & 0 & -2 & 1 \\
0 & 0 & 1 & -1
\end{bmatrix} x + \begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix} u, \quad y = x
\]

eigenvalues of \(A \) are

\[-0.17, \quad -0.66, \quad -2.21, \quad -3.96\]
step response matrix \(s(t) \in \mathbb{R}^{4 \times 1} \):

- shortest delay to \(x_1 \); longest delay to \(x_4 \)
- delays \(\approx 10 \), consistent with slowest (i.e., dominant) eigenvalue \(-0.17\)
DC or static gain matrix

• transfer matrix at \(s = 0 \) is \(H(0) = -CA^{-1}B + D \in \mathbb{R}^{m \times p} \)

• DC transfer matrix describes system under static conditions, \(i.e., x, u, y \) constant:
\[
0 = \dot{x} = Ax + Bu, \quad y = Cx + Du
\]
eliminate \(x \) to get \(y = H(0)u \)

• if system is stable,
\[
H(0) = \int_{0}^{\infty} h(t) \, dt = \lim_{t \to \infty} s(t)
\]
(recall: \(H(s) = \int_{0}^{\infty} e^{-st}h(t) \, dt, \quad s(t) = \int_{0}^{t} h(\tau) \, d\tau \))

if \(u(t) \to u_{\infty} \in \mathbb{R}^{m} \), then \(y(t) \to y_{\infty} \in \mathbb{R}^{p} \) where \(y_{\infty} = H(0)u_{\infty} \)
DC gain matrix for example 1 (springs):

$$H(0) = \begin{bmatrix} 1/4 & 1/4 \\ -1/2 & 1/2 \\ -1/4 & -1/4 \end{bmatrix}$$

DC gain matrix for example 2 (RC circuit):

$$H(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

(do these make sense?)
Discretization with piecewise constant inputs

Linear system \(\dot{x} = Ax + Bu, \ y = Cx + Du \)

suppose \(u_d : \mathbb{Z}_+ \rightarrow \mathbb{R}^m \) is a sequence, and

\[u(t) = u_d(k) \quad \text{for} \quad kh \leq t < (k + 1)h, \ k = 0, 1, \ldots \]

define sequences

\[x_d(k) = x(kh), \quad y_d(k) = y(kh), \quad k = 0, 1, \ldots \]

• \(h > 0 \) is called the sample interval (for \(x \) and \(y \)) or update interval (for \(u \))

• \(u \) is piecewise constant (called zero-order-hold)

• \(x_d, y_d \) are sampled versions of \(x, y \)
\begin{align*}
x_d(k + 1) &= x((k + 1)h) \\
&= e^{hA}x(kh) + \int_0^h e^{\tau A}Bu((k + 1)h - \tau) \, d\tau \\
&= e^{hA}x_d(k) + \left(\int_0^h e^{\tau A} \, d\tau \right) B \, u_d(k)
\end{align*}

\(x_d, \ u_d, \) and \(y_d \) satisfy discrete-time LDS equations

\[x_d(k + 1) = A_dx_d(k) + B_du_d(k), \quad y_d(k) = C_dx_d(k) + D_du_d(k) \]

where

\[A_d = e^{hA}, \quad B_d = \left(\int_0^h e^{\tau A} \, d\tau \right) B, \quad C_d = C, \quad D_d = D \]
called *discretized system*

if A is invertible, we can express integral as

$$
\int_0^h e^{\tau A} \, d\tau = A^{-1} \left(e^{hA} - I \right)
$$

stability: if eigenvalues of A are $\lambda_1, \ldots, \lambda_n$, then eigenvalues of A_d are $e^{h\lambda_1}, \ldots, e^{h\lambda_n}$

discretization preserves stability properties since

$$
\Re \lambda_i < 0 \iff |e^{h\lambda_i}| < 1
$$

for $h > 0$
extensions/variations:

- offsets: updates for u and sampling of x, y are offset in time

- multirate: u_i updated, y_i sampled at different intervals
 (usually integer multiples of a common interval h)

both very common in practice
Dual system

the dual system associated with system

\[
\dot{x} = Ax + Bu, \quad y = Cx + Du
\]

is given by

\[
\dot{z} = A^T z + C^T v, \quad w = B^T z + D^T v
\]

- all matrices are transposed
- role of B and C are swapped

transfer function of dual system:

\[
(B^T)(sI - A^T)^{-1}(C^T) + D^T = H(s)^T
\]

where $H(s) = C(sI - A)^{-1}B + D$
(for SISO case, TF of dual is same as original)
eigenvalues (hence stability properties) are the same
Dual via block diagram

in terms of block diagrams, dual is formed by:

- transpose all matrices
- swap inputs and outputs on all boxes
- reverse directions of signal flow arrows
- swap solder joints and summing junctions
original system:

\[
\begin{align*}
u(t) &\rightarrow B & \rightarrow 1/s & \rightarrow x(t) &\rightarrow C &\rightarrow y(t) \\
A &\rightarrow D
\end{align*}
\]

dual system:

\[
\begin{align*}
w(t) &\rightarrow B^T & \rightarrow 1/s & \rightarrow z(t) &\rightarrow C^T &\rightarrow v(t) \\
A^T &\rightarrow D^T
\end{align*}
\]
Causality

interpretation of

\[x(t) = e^{tA}x(0) + \int_0^t e^{(t-\tau)A}Bu(\tau) \, d\tau \]

\[y(t) = Ce^{tA}x(0) + \int_0^t Ce^{(t-\tau)A}Bu(\tau) \, d\tau + Du(t) \]

for \(t \geq 0 \):

current state \((x(t))\) and output \((y(t))\) depend on *past* input \((u(\tau)\) for \(\tau \leq t \))

i.e., mapping from input to state and output is *causal* (with fixed *initial* state)
now consider fixed final state $x(T)$: for $t \leq T$,

$$x(t) = e^{(t-T)A}x(T) + \int_T^t e^{(t-\tau)A}Bu(\tau) \, d\tau,$$

i.e., current state (and output) depend on future input!

so for fixed final condition, same system is anti-causal
Idea of state

$x(t)$ is called state of system at time t since:

- future output depends only on current state and future input
- future output depends on past input only through current state
- state summarizes effect of past inputs on future output
- state is bridge between past inputs and future outputs
Change of coordinates

start with LDS $\dot{x} = Ax + Bu, \ y = Cx + Du$

change coordinates in \mathbb{R}^n to \tilde{x}, with $x = T\tilde{x}$

then

$$\dot{\tilde{x}} = T^{-1}\dot{x} = T^{-1}(Ax + Bu) = T^{-1}AT\tilde{x} + T^{-1}Bu$$

hence LDS can be expressed as

$$\dot{\tilde{x}} = \tilde{A}\tilde{x} + \tilde{B}u, \quad y = \tilde{C}\tilde{x} + \tilde{D}u$$

where

$$\tilde{A} = T^{-1}AT, \quad \tilde{B} = T^{-1}B, \quad \tilde{C} = CT, \quad \tilde{D} = D$$

TF is same (since $u, \ y$ aren’t affected):

$$\tilde{C}(sI - \tilde{A})^{-1}\tilde{B} + \tilde{D} = C(sI - A)^{-1}B + D$$
Standard forms for LDS

can change coordinates to put A in various forms (diagonal, real modal, Jordan . . .)

e.g., to put LDS in diagonal form, find T s.t.

$$T^{-1}AT = \text{diag}(\lambda_1, \ldots, \lambda_n)$$

write

$$T^{-1}B = \begin{bmatrix} \tilde{b}_1^T \\ \vdots \\ \tilde{b}_n^T \end{bmatrix}, \quad CT = \begin{bmatrix} \tilde{c}_1 & \cdots & \tilde{c}_n \end{bmatrix}$$

so

$$\dot{x}_i = \lambda_i \tilde{x}_i + \tilde{b}_i^T u, \quad y = \sum_{i=1}^n \tilde{c}_i \tilde{x}_i$$
(here we assume $D = 0$)
Discrete-time systems

discrete-time LDS:

\[x(t + 1) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t) \]

- only difference w/cts-time: \(z \) instead of \(s \)
- interpretation of \(z^{-1} \) block:
 - unit delayor (shifts sequence back in time one epoch)
 - latch (plus small delay to avoid race condition)
we have:

\[x(1) = Ax(0) + Bu(0), \]

\[x(2) = Ax(1) + Bu(1) \]
\[= A^2x(0) + ABu(0) + Bu(1), \]

and in general, for \(t \in \mathbb{Z}_+ \),

\[x(t) = A^tx(0) + \sum_{\tau=0}^{t-1} A^{(t-1-\tau)}Bu(\tau) \]

hence

\[y(t) = CA^tx(0) + h \ast u \]
where \ast is discrete-time convolution and

$$h(t) = \begin{cases}
D, & t = 0 \\
CA^{t-1}B, & t > 0
\end{cases}$$

is the impulse response
\textbf{\(\mathcal{Z}\)-transform}

suppose \(w \in \mathbb{R}^{p \times q}\) is a sequence (discrete-time signal), \(i.e.,\)

\[w : \mathbb{Z}_+ \rightarrow \mathbb{R}^{p \times q}\]

recall \(\mathcal{Z}\)-transform \(W = \mathcal{Z}(w)\):

\[W(z) = \sum_{t=0}^{\infty} z^{-t}w(t)\]

where \(W : D \subseteq \mathbb{C} \rightarrow \mathbb{C}^{p \times q}\) \((D\) is domain of \(W)\)

time-advanced or shifted signal \(v\):

\[v(t) = w(t + 1), \quad t = 0, 1, \ldots\]
\(\mathcal{Z} \)-transform of time-advanced signal:

\[
V(z) = \sum_{t=0}^{\infty} z^{-t} w(t + 1)
\]

\[
= z \sum_{t=1}^{\infty} z^{-t} w(t)
\]

\[
= zW(z) - zw(0)
\]
Discrete-time transfer function

take \mathcal{Z}-transform of system equations

$$
x(t + 1) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)
$$

yields

$$
zX(z) - zx(0) = AX(z) + BU(z), \quad Y(z) = CX(z) + DU(z)
$$

solve for $X(z)$ to get

$$
X(z) = (zI - A)^{-1}zx(0) + (zI - A)^{-1}BU(z)
$$

(note extra z in first term!)
hence

\[Y(z) = H(z)U(z) + C(zI - A)^{-1}zx(0) \]

where \(H(z) = C(zI - A)^{-1}B + D \) is the \textit{discrete-time transfer function}

note power series expansion of resolvent:

\[
(zI - A)^{-1} = z^{-1}I + z^{-2}A + z^{-3}A^2 + \cdots
\]