Contents

Lecture 1 – Overview
Lecture 2 – Linear functions and examples
Lecture 3 – Linear algebra review
Lecture 4 – Orthonormal sets of vectors and QR factorization
Lecture 5 – Least-squares
Lecture 6 – Least-squares applications
Lecture 7 – Regularized least-squares and Gauss-Newton method
Lecture 8 – Least-norm solutions of underdetermined equations
Lecture 9 – Autonomous linear dynamical systems
Lecture 10 – Solution via Laplace transform and matrix exponential
Lecture 11 – Eigenvectors and diagonalization
Lecture 12 – Jordan canonical form
Lecture 13 – Linear dynamical systems with inputs and outputs
Lecture 14 – Example: Aircraft dynamics
Lecture 15 – Symmetric matrices, quadratic forms, matrix norm, and SVD
Lecture 16 – SVD applications
Lecture 17 – Example: Quantum mechanics
Lecture 18 – Controllability and state transfer
Lecture 19 – Observability and state estimation
Lecture 20 – Some final comments

Basic notation
Matrix primer
Crimes against matrices
Solving general linear equations using Matlab
Least-squares and least-norm solutions using Matlab

Exercises