EE263 Autumn 2008-09 Stephen Boyd

Lecture 9
Autonomous linear dynamical systems

e autonomous linear dynamical systems
e examples

e higher order systems

e linearization near equilibrium point

e linearization along trajectory
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Autonomous linear dynamical systems

continuous-time autonomous LDS has form
T = Ax
e x(t) € R" is called the state

e n is the state dimension or (informally) the number of states

e A is the dynamics matrix
(system is time-invariant if A doesn't depend on t)
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picture (phase plane):
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Block diagram

block diagram representation of © = Aux:

- 1/s

(&

e 1/s block represents n parallel scalar integrators

e coupling comes from dynamics matrix A
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useful when A has structure, e.g., block upper triangular:

5 — Ay Ar .

1/s

here x1 doesn't affect x5 at all
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Linear circuit

icl 111
+ - N
Vel == (4 L& v
t lep linear static circuit i

circuit equations are

cWe _;  pdu_ [ZC]:F[QC]

dt dt

C' = diag(Cy,...,C)), L =diag(L4,...,L,)
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with state x = [
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Chemical reactions

e reaction involving n chemicals; x; is concentration of chemical 7

e linear model of reaction kinetics

CZSCZ'
Pt Tt Qindn

e good model for some reactions; A is usually sparse
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Finite-state discrete-time Markov chain

2(t) € {1,...,n} is a random sequence with
Prob( z(t+1)=i| 2(t)=j ) = P;;
where P € R™*" is the matrix of transition probabilities

can represent probability distribution of z(¢) as n-vector

[ Prob(z(t) =1)
p(t) = '

I Prob(z:(t) =n) |

(so, e.g., Prob(z(t) =1,2, or3) =[1110---0]p(t))

then we have p(t + 1) = Pp(t)

Autonomous linear dynamical systems
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P is often sparse; Markov chain is depicted graphically

e nodes are states

e edges show transition probabilities

Autonomous linear dynamical systems 9-13



example:
0.9

20

1.0 @\0.1
0.7

\/ 0.1

0.2

e state 1 is ‘system OK’
e state 2 is ‘system down’

e state 3 is ‘system being repaired’

[ 0.9 0.7 1.0
pt+1)=1 01 01 0 |p(t)
| 0 02 0 |
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Numerical integration of continuous system

compute approximate solution of & = Az, z(0) = z
suppose h is small time step (x doesn’'t change much in h seconds)

simple (‘forward Euler') approximation:

2(t 4+ h) ~ z(t) + hi(t) = (I + hA)z(t)

by carrying out this recursion (discrete-time LDS), starting at x(0) = xo,
we get approximation

z(kh) =~ (I + hA)*z(0)

(forward Euler is never used in practice)
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Higher order linear dynamical systems

2 F) = Ap 2% o4 A+ Aoz, x(t) € R"

where z(™) denotes mth derivative

define new variable z =

- (1)

()

xr
21

a;(k__l)

c R™ so
I 0 0 |
0 1 0

2
o 0 .- I
Ay Ay o Apr

a (first order) LDS (with bigger state)
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block diagram:
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Mechanical systems

mechanical system with k degrees of freedom undergoing small motions:

Mi+Di+Kqg=0

e ¢(t) € R" is the vector of generalized displacements

e N is the mass matrix
e K is the stiffness matrix

e D is the damping matrix

q ] we have

with state xz = [ i
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Linearization near equilibrium point

nonlinear, time-invariant differential equation (DE):

i = f(x)

where f : R" — R"

suppose . is an equilibrium point, i.e., f(x.) =0

(so x(t) = x. satisfies DE)

now suppose x(t) is near x., SO

Autonomous linear dynamical systems

9-19



with dx(t) = z(t) — x., rewrite as

5x(t) ~ Df(x.)0x(t)

replacing ~ with = yields linearized approximation of DE near x,

we hope solution of 6z = D f(x.)dx is a good approximation of = — .

(more later)
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example: pendulum

- mg
Y

2nd order nonlinear DE mli26 = —lmgsin 0

rewrite as first order DE with state 2 = [ g ] :

i
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equilibrium point (pendulum down): x =0

linearized system near x., = 0:

: 0 1
(5:6—[_9/1 O]5ZC
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Does linearization ‘work’?

the linearized system usually, but not always, gives a good idea of the
system behavior near z,

3

example 1: + = —x° near z, =0

for £(0) > 0 solutions have form z(t) = (g;(())—Q 4+ Qt)_l/Q
linearized system is S = 0; solutions are constant

example 2: z = 2°

near z, = 0
for z(0) > 0 solutions have form z(t) = (z(O)—2 _ 2;5)_1/2
(finite escape time at t = 2(0)™2/2)

linearized system is 0z = 0; solutions are constant
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o1 dx(t) = 62(t)
0.05F . CIL’(t)

e systems with very different behavior have same linearized system

e linearized systems do not predict qualitative behavior of either system
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Linearization along trajectory

® SUppose Ty, : Ry — R satisfies Z,25(t) = f(Ttraj(t),t)

e suppose x(t) is another trajectory, i.e., ©(t) = f(x(t),t), and is near
Ttraj(?)

e then

d
%(.CE — xtraj) — f(xa t) _ f(xtraja t) ~ Dwf(xtraj7t>(x B xtraj)

e (time-varying) LDS .
0t = Dy f(%traj, )0

is called linearized or variational system along trajectory Ti;a;
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example: linearized oscillator

SUPPOSE Tiraj(t) is T-periodic solution of nonlinear DE:

Teraj(t) = f(Ttraj(t)), Tiraj(t + 1) = Toraj(l)

linearized system is

oz = A(t)dz
where A(t) = D f(Ztraj(t))

A(t) is T-periodic, so linearized system is called T-periodic linear system.

used to study:

e startup dynamics of clock and oscillator circuits

o effects of power supply and other disturbances on clock behavior
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