Lecture 9 Autonomous linear dynamical systems

- autonomous linear dynamical systems
- examples
- higher order systems
- linearization near equilibrium point
- linearization along trajectory

Autonomous linear dynamical systems

continuous-time autonomous LDS has form

 $\dot{x} = Ax$

- $x(t) \in \mathbf{R}^n$ is called the state
- *n* is the *state dimension* or (informally) the *number of states*
- A is the dynamics matrix (system is time-invariant if A doesn't depend on t)

picture (*phase plane*):

example 1:
$$\dot{x} = \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix} x$$

example 2:
$$\dot{x} = \begin{bmatrix} -0.5 & 1 \\ -1 & 0.5 \end{bmatrix} x$$

Block diagram

block diagram representation of $\dot{x} = Ax$:

- 1/s block represents n parallel scalar integrators
- coupling comes from dynamics matrix A

useful when A has structure, e.g., block upper triangular:

$$\dot{x} = \left[\begin{array}{cc} A_{11} & A_{12} \\ 0 & A_{22} \end{array} \right] x$$

here x_1 doesn't affect x_2 at all

Linear circuit

circuit equations are

$$C\frac{dv_c}{dt} = i_c, \qquad L\frac{di_l}{dt} = v_l, \qquad \begin{bmatrix} i_c \\ v_l \end{bmatrix} = F\begin{bmatrix} v_c \\ i_l \end{bmatrix}$$
$$C = \operatorname{diag}(C_1, \dots, C_p), \qquad L = \operatorname{diag}(L_1, \dots, L_r)$$

with state
$$x = \begin{bmatrix} v_c \\ i_l \end{bmatrix}$$
, we have $\dot{x} = \begin{bmatrix} C^{-1} & 0 \\ 0 & L^{-1} \end{bmatrix} Fx$

Chemical reactions

- reaction involving n chemicals; x_i is concentration of chemical i
- linear model of reaction kinetics

$$\frac{dx_i}{dt} = a_{i1}x_1 + \dots + a_{in}x_n$$

• good model for some reactions; A is usually sparse

Example: series reaction $A \xrightarrow{k_1} B \xrightarrow{k_2} C$ with linear dynamics

$$\dot{x} = \begin{bmatrix} -k_1 & 0 & 0\\ k_1 & -k_2 & 0\\ 0 & k_2 & 0 \end{bmatrix} x$$

plot for $k_1 = k_2 = 1$, initial x(0) = (1, 0, 0)

Finite-state discrete-time Markov chain

 $z(t) \in \{1, \ldots, n\}$ is a random sequence with

Prob(
$$z(t+1) = i | z(t) = j$$
) = P_{ij}

where $P \in \mathbf{R}^{n \times n}$ is the matrix of *transition probabilities*

can represent probability distribution of z(t) as *n*-vector

$$p(t) = \begin{bmatrix} \mathbf{Prob}(z(t) = 1) \\ \vdots \\ \mathbf{Prob}(z(t) = n) \end{bmatrix}$$

(so, *e.g.*, $\mathbf{Prob}(z(t) = 1, 2, \text{ or } 3) = [1 \ 1 \ 1 \ 0 \cdots 0]p(t))$

then we have p(t+1) = Pp(t)

P is often sparse; Markov chain is depicted graphically

• nodes are states

• edges show transition probabilities

example:

- state 1 is 'system OK'
- state 2 is 'system down'
- state 3 is 'system being repaired'

$$p(t+1) = \begin{bmatrix} 0.9 & 0.7 & 1.0\\ 0.1 & 0.1 & 0\\ 0 & 0.2 & 0 \end{bmatrix} p(t)$$

Numerical integration of continuous system

compute approximate solution of $\dot{x} = Ax$, $x(0) = x_0$

suppose h is small time step (x doesn't change much in h seconds) simple ('forward Euler') approximation:

$$x(t+h) \approx x(t) + h\dot{x}(t) = (I+hA)x(t)$$

by carrying out this recursion (discrete-time LDS), starting at $x(0) = x_0$, we get approximation

$$x(kh) \approx (I + hA)^k x(0)$$

(forward Euler is never used in practice)

Higher order linear dynamical systems

$$x^{(k)} = A_{k-1}x^{(k-1)} + \dots + A_1x^{(1)} + A_0x, \quad x(t) \in \mathbf{R}^n$$

where $x^{(m)}$ denotes mth derivative

define new variable
$$z = \begin{bmatrix} x \\ x^{(1)} \\ \vdots \\ x^{(k-1)} \end{bmatrix} \in \mathbf{R}^{nk}$$
, so

$$\dot{z} = \begin{bmatrix} x^{(1)} \\ \vdots \\ x^{(k)} \end{bmatrix} = \begin{bmatrix} 0 & I & 0 & \cdots & 0 \\ 0 & 0 & I & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & 0 & \cdots & I \\ A_0 & A_1 & A_2 & \cdots & A_{k-1} \end{bmatrix} z$$

a (first order) LDS (with bigger state)

block diagram:

Mechanical systems

mechanical system with k degrees of freedom undergoing small motions:

 $M\ddot{q} + D\dot{q} + Kq = 0$

- $q(t) \in \mathbf{R}^k$ is the vector of generalized displacements
- *M* is the *mass matrix*
- *K* is the *stiffness matrix*
- *D* is the *damping matrix*

with state
$$x = \begin{bmatrix} q \\ \dot{q} \end{bmatrix}$$
 we have

$$\dot{x} = \begin{bmatrix} \dot{q} \\ \ddot{q} \end{bmatrix} = \begin{bmatrix} 0 & I \\ -M^{-1}K & -M^{-1}D \end{bmatrix} x$$

Linearization near equilibrium point

nonlinear, time-invariant differential equation (DE):

$$\dot{x} = f(x)$$

where $f : \mathbf{R}^n \to \mathbf{R}^n$

suppose x_e is an equilibrium point, *i.e.*, $f(x_e) = 0$ (so $x(t) = x_e$ satisfies DE)

now suppose x(t) is near x_e , so

$$\dot{x}(t) = f(x(t)) \approx f(x_e) + Df(x_e)(x(t) - x_e)$$

with $\delta x(t) = x(t) - x_e$, rewrite as

$$\dot{\delta x}(t) \approx Df(x_e)\delta x(t)$$

replacing \approx with = yields *linearized approximation* of DE near x_e

we hope solution of $\dot{\delta x} = Df(x_e)\delta x$ is a good approximation of $x - x_e$ (more later)

example: pendulum

2nd order nonlinear DE $ml^2\ddot{\theta} = -lmg\sin\theta$ rewrite as first order DE with state $x = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}$:

$$\dot{x} = \begin{bmatrix} x_2 \\ -(g/l)\sin x_1 \end{bmatrix}$$

Autonomous linear dynamical systems

equilibrium point (pendulum down): x = 0

linearized system near $x_e = 0$:

$$\dot{\delta x} = \left[\begin{array}{cc} 0 & 1 \\ -g/l & 0 \end{array} \right] \delta x$$

Does linearization 'work'?

the linearized system usually, but not always, gives a good idea of the system behavior near x_e

example 1: $\dot{x} = -x^3$ near $x_e = 0$

for x(0) > 0 solutions have form $x(t) = (x(0)^{-2} + 2t)^{-1/2}$

linearized system is $\delta x = 0$; solutions are constant

example 2: $\dot{z} = z^3$ near $z_e = 0$

for z(0) > 0 solutions have form $z(t) = (z(0)^{-2} - 2t)^{-1/2}$

(finite escape time at $t = z(0)^{-2}/2$)

linearized system is $\dot{\delta z} = 0$; solutions are constant

- systems with very different behavior have same linearized system
- linearized systems do not predict qualitative behavior of either system

Linearization along trajectory

- suppose $x_{\text{traj}} : \mathbf{R}_+ \to \mathbf{R}^n$ satisfies $\dot{x}_{\text{traj}}(t) = f(x_{\text{traj}}(t), t)$
- suppose x(t) is another trajectory, $i.e.,\ \dot{x}(t)=f(x(t),t),$ and is near $x_{\rm traj}(t)$
- then

$$\frac{d}{dt}(x - x_{\text{traj}}) = f(x, t) - f(x_{\text{traj}}, t) \approx D_x f(x_{\text{traj}}, t)(x - x_{\text{traj}})$$

• (time-varying) LDS

$$\dot{\delta x} = D_x f(x_{\text{traj}}, t) \delta x$$

is called *linearized* or variational system along trajectory x_{traj}

example: linearized oscillator

suppose $x_{traj}(t)$ is T-periodic solution of nonlinear DE:

$$\dot{x}_{\text{traj}}(t) = f(x_{\text{traj}}(t)), \qquad x_{\text{traj}}(t+T) = x_{\text{traj}}(t)$$

linearized system is

$$\dot{\delta x} = A(t)\delta x$$

where $A(t) = Df(x_{traj}(t))$

A(t) is T-periodic, so linearized system is called T-periodic linear system. used to study:

- startup dynamics of clock and oscillator circuits
- effects of power supply and other disturbances on clock behavior