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Autonomous linear dynamical systems

• autonomous linear dynamical systems

• examples

• higher order systems

• linearization near equilibrium point

• linearization along trajectory
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Autonomous linear dynamical systems

continuous-time autonomous LDS has form

ẋ = Ax

• x(t) ∈ Rn is called the state

• n is the state dimension or (informally) the number of states

• A is the dynamics matrix

(system is time-invariant if A doesn’t depend on t)
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picture (phase plane):

x1

x2

x(t)

ẋ(t) = Ax(t)
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example 1: ẋ =

[

−1 0
2 1

]
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example 2: ẋ =

[

−0.5 1
−1 0.5

]
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Block diagram

block diagram representation of ẋ = Ax:

1/s
nn

A

x(t)ẋ(t)

• 1/s block represents n parallel scalar integrators

• coupling comes from dynamics matrix A
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useful when A has structure, e.g., block upper triangular:

ẋ =

[

A11 A12

0 A22

]

x

x1

x21/s

1/s

A11

A12

A22

here x1 doesn’t affect x2 at all
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Linear circuit

linear static circuit

C1

Cp

L1

Lr

vc1

vcp

ic1

icp

vl1

vlr

il1

ilr

circuit equations are

C
dvc

dt
= ic, L

dil
dt

= vl,

[

ic
vl

]

= F

[

vc

il

]

C = diag(C1, . . . , Cp), L = diag(L1, . . . , Lr)
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with state x =

[

vc

il

]

, we have

ẋ =

[

C−1 0
0 L−1

]

Fx
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Chemical reactions

• reaction involving n chemicals; xi is concentration of chemical i

• linear model of reaction kinetics

dxi

dt
= ai1x1 + · · · + ainxn

• good model for some reactions; A is usually sparse
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Example: series reaction A
k1−→ B

k2−→ C with linear dynamics

ẋ =





−k1 0 0
k1 −k2 0
0 k2 0



 x

plot for k1 = k2 = 1, initial x(0) = (1, 0, 0)
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Finite-state discrete-time Markov chain

z(t) ∈ {1, . . . , n} is a random sequence with

Prob( z(t + 1) = i | z(t) = j ) = Pij

where P ∈ Rn×n is the matrix of transition probabilities

can represent probability distribution of z(t) as n-vector

p(t) =





Prob(z(t) = 1)
...

Prob(z(t) = n)





(so, e.g., Prob(z(t) = 1, 2, or 3) = [1 1 1 0 · · · 0]p(t))

then we have p(t + 1) = Pp(t)
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P is often sparse; Markov chain is depicted graphically

• nodes are states

• edges show transition probabilities

Autonomous linear dynamical systems 9–13



example:

1
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• state 1 is ‘system OK’

• state 2 is ‘system down’

• state 3 is ‘system being repaired’

p(t + 1) =





0.9 0.7 1.0
0.1 0.1 0
0 0.2 0



 p(t)
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Numerical integration of continuous system

compute approximate solution of ẋ = Ax, x(0) = x0

suppose h is small time step (x doesn’t change much in h seconds)

simple (‘forward Euler’) approximation:

x(t + h) ≈ x(t) + hẋ(t) = (I + hA)x(t)

by carrying out this recursion (discrete-time LDS), starting at x(0) = x0,
we get approximation

x(kh) ≈ (I + hA)kx(0)

(forward Euler is never used in practice)
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Higher order linear dynamical systems

x(k) = Ak−1x
(k−1) + · · · + A1x

(1) + A0x, x(t) ∈ Rn

where x(m) denotes mth derivative

define new variable z =









x
x(1)

...
x(k−1)









∈ Rnk, so

ż =





x(1)

...
x(k)



 =













0 I 0 · · · 0
0 0 I · · · 0
... ...
0 0 0 · · · I

A0 A1 A2 · · · Ak−1













z

a (first order) LDS (with bigger state)
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block diagram:

1/s1/s1/sx(k) x(k−1) x(k−2)
x

Ak−1 Ak−2 A0
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Mechanical systems

mechanical system with k degrees of freedom undergoing small motions:

Mq̈ + Dq̇ + Kq = 0

• q(t) ∈ Rk is the vector of generalized displacements

• M is the mass matrix

• K is the stiffness matrix

• D is the damping matrix

with state x =

[

q
q̇

]

we have

ẋ =

[

q̇
q̈

]

=

[

0 I
−M−1K −M−1D

]

x
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Linearization near equilibrium point

nonlinear, time-invariant differential equation (DE):

ẋ = f(x)

where f : Rn → Rn

suppose xe is an equilibrium point, i.e., f(xe) = 0

(so x(t) = xe satisfies DE)

now suppose x(t) is near xe, so

ẋ(t) = f(x(t)) ≈ f(xe) + Df(xe)(x(t) − xe)
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with δx(t) = x(t) − xe, rewrite as

˙δx(t) ≈ Df(xe)δx(t)

replacing ≈ with = yields linearized approximation of DE near xe

we hope solution of ˙δx = Df(xe)δx is a good approximation of x − xe

(more later)

Autonomous linear dynamical systems 9–20



example: pendulum

l

θ

m
mg

2nd order nonlinear DE ml2θ̈ = −lmg sin θ

rewrite as first order DE with state x =

[

θ

θ̇

]

:

ẋ =

[

x2

−(g/l) sinx1

]
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equilibrium point (pendulum down): x = 0

linearized system near xe = 0:

˙δx =

[

0 1
−g/l 0

]

δx
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Does linearization ‘work’?

the linearized system usually, but not always, gives a good idea of the
system behavior near xe

example 1: ẋ = −x3 near xe = 0

for x(0) > 0 solutions have form x(t) =
(

x(0)−2 + 2t
)

−1/2

linearized system is ˙δx = 0; solutions are constant

example 2: ż = z3 near ze = 0

for z(0) > 0 solutions have form z(t) =
(

z(0)−2 − 2t
)

−1/2

(finite escape time at t = z(0)−2/2)

linearized system is δ̇z = 0; solutions are constant
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• systems with very different behavior have same linearized system

• linearized systems do not predict qualitative behavior of either system
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Linearization along trajectory

• suppose xtraj : R+ → Rn satisfies ẋtraj(t) = f(xtraj(t), t)

• suppose x(t) is another trajectory, i.e., ẋ(t) = f(x(t), t), and is near
xtraj(t)

• then

d

dt
(x − xtraj) = f(x, t) − f(xtraj, t) ≈ Dxf(xtraj, t)(x − xtraj)

• (time-varying) LDS
˙δx = Dxf(xtraj, t)δx

is called linearized or variational system along trajectory xtraj
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example: linearized oscillator

suppose xtraj(t) is T -periodic solution of nonlinear DE:

ẋtraj(t) = f(xtraj(t)), xtraj(t + T ) = xtraj(t)

linearized system is
˙δx = A(t)δx

where A(t) = Df(xtraj(t))

A(t) is T -periodic, so linearized system is called T -periodic linear system.

used to study:

• startup dynamics of clock and oscillator circuits

• effects of power supply and other disturbances on clock behavior
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