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Lecture 14
Example: Aircraft dynamics

e longitudinal aircraft dynamics
e wind gust & control inputs

e linearized dynamics

e steady-state analysis

e cigenvalues & modes

e impulse matrices
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Longitudinal aircraft dynamics

body axis

}o

> horizontal

variables are (small) deviations from operating point or trim conditions

state (components):

e wu: velocity of aircraft along body axis

e v: velocity of aircraft perpendicular to body axis
(down is positive)

e (: angle between body axis and horizontal
(up is positive)

e ¢ = 0: angular velocity of aircraft (pitch rate)
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Inputs

disturbance inputs:

e wu,,: velocity of wind along body axis

e v, velocity of wind perpendicular to body axis

control or actuator inputs:

e J.: elevator angle (J. > 0 is down)

e O;: thrust
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Linearized dynamics

for 747, level flight, 40000 ft, 774 ft/sec,
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e units: ft, sec, crad (= 0.01rad ~ 0.57°)

e matrix coefficients are called stability derivatives
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outputs of interest:

e aircraft speed u (deviation from trim)

o climb rate h = —v + 7.740
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Steady-state analysis

DC gain from (wu, Vu, Oe, 0;) to (u, h):

I 0 27.2 —15.0

_ a1 _
HO)=-CA"B+D=\| | {35 o49

gives steady-state change in speed & climb rate due to wind, elevator &
thrust changes

solve for control variables in terms of wind velocities, desired speed &
climb rate
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e level flight, increase in speed is obtained mostly by increasing elevator
(i.e., downwards)

e constant speed, increase in climb rate is obtained by increasing thrust
and increasing elevator (i.e., downwards)

(thrust on 747 gives strong pitch up torque)
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Eigenvalues and modes

eigenvalues are

—0.3750 = 0.88187, —0.0005 = 0.0674y

e two complex modes, called short-period and phugoid, respectively
e system is stable (but lightly damped)

e hence step responses converge (eventually) to DC gain matrix
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eigenvectors are

Lshort

Lphug

Example: Aircraft dynamics
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Short-period mode

y(t) = Ce!(Rgnore) (pure short-period mode motion)
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e only small effect on speed u

e period = 7 sec, decays in = 10 sec

Example: Aircraft dynamics
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Phugoid mode

y(t) = Ce*(Rxpnug) (pure phugoid mode motion)
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e affects both speed and climb rate

e period =~ 100 sec; decays in = 5000 sec

Example: Aircraft dynamics
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Dynamic response to wind gusts

impulse response matrix from (uq, V) to (u, k) (gives response to short

wind bursts)

over time period [0, 20]:
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over time period [0, 600]:
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Dynamic response to actuators

impulse response matrix from (de, ;) to (u, h)

over time period [0, 20]:
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over time period

Example: Aircraft dynamics
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